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Chapter 1

Introduction

1.1 Motivation

Electricity markets are unique. Electricity has unique characteristics, electricity mar-

kets are very young and in most cases still illiquid. The electricity sector has undergone

dramatic changes over the past few years. Before deregulation electricity prices were

predictable. Electricity industry companies were mostly regulated or state-owned inte-

grated monopolies combining generation, transmission and distribution. Distribution

of the electricity may be a natural monopoly, but generation is not.

The deregulation started in the 1990s in the United Kingdom and New Zealand,

followed by Sweden, Norway, Australia and few districts and some US states. In the

Netherlands the deregulation process started in 2000 and continues at the moment.

As a result of deregulation spot prices and prices of derivatives of electricity are now

available for trading in many power, electricity and commodity exchanges all over the

world.

The need for creating appropriate models for pricing the spot electricity and deriv-

atives presented in the market arose. The natural possibility to price electricity is to

use previously developed �nancial models for stocks, interest rates and commodities.

However, these models must be adapted to the particular conditions of power markets,

especially the non-storability of power. Moreover, some derivatives products cannot

be found in other markets, for example swing options. There are standard products:

futures, forwards, swaps, options, but even they have special features, which re�ect

the physical nature. The commodities underlying these products are also di¤erent.

Power delivered at any particular hour, block of hours, week, month, and so on, repre-

sents very di¤erent commodity, because electricity cannot be stored and thus must be

studied independently.

What makes electricity so di¤erent from other products such as derivatives on

stocks, interest rates and commodities?

1



2 CHAPTER 1. INTRODUCTION

Electricity markets are very young markets and derivative markets lack liquidity

even for such simple products as vanilla options. On the other hand, electricity is

widely used by households and industries. There are many complex fundamental price

drivers such as generation and transmission restrictions, which makes all electricity

products especially di¢ cult to model.

Though the liberalization of electricity market brings a lot of risks for players in

the market, it also o¤ers new possibilities for producers, distributors and users of elec-

tricity. To use these possibilities one needs to understand all important characteristics

of electricity and derivatives products and use the wide array available products to

manage risks. As the basis for the management of risks associated with electricity one

needs to build new pricing models that can capture all important characteristics of

spot and other products used for hedging.

1.2 Goal

The goal of this thesis is to construct an appropriate model for pricing futures and

options on futures on spot electricity and to test it on existing data from electricity

markets. To do this we consider �rst the important characteristics of the spot, futures

and option markets and give an overview of the models used in �nancial markets to

price stocks, interest rates and commodities. We introduce the two-factor Schwartz

and Smith model [29] and show how to modify the model to take the averaging of the

spot price over the delivery period into account. We test the model on German and

Dutch markets.

1.3 Structure of the thesis

In Chapter 2 we investigate electricity markets in general, highlight the main charac-

teristics of spot electricity prices, futures and options on futures in more details and

give an overview of other derivatives traded in the di¤erent markets. We concentrate

our attention on European Energy Exchange (EEX) located in Leipzig in Germany

and Amsterdam Power Exchange (APX).

In Chapter 3 the statistical properties of spot, futures and options prices on the EEX

and APX markets are analyzes and statistics for these data are presented. Chapter 4

introduces an overview of classical models for �nancial derivatives, interest rates and

commodities and pros and cons of each model for purpose of spot electricity pricing

are pointed out. Chapter 5 presents the two-factor model derived from the Schwartz

and Smith model for pricing commodities. In this modi�ed model, which takes into

account the averaging of the spot prices over the delivery period, we derive closed-

form solutions for futures prices, options prices and risk term premium. Chapter 6
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describes how we implement the model from the previous chapter, methods used for

model calibration, Kalman �lter and optimization techniques. Di¤erent possibilities

to include seasonality factors into the model, description of data used for calibration

and constraints of the implementation are also presented in this chapter. Chapter 7

gives results of implementation. In Chapter 8 we give our conclusions and direction for

future research.



Chapter 2

Electricity market

2.1 Deregulation of electricity market

This deregulation of power markets on gas and electricity markets started at the end

of 1990s. Before deregulation the electricity industry was highly vertically integrated

and had little competition. It was observable all over the world, that generation and

transmission industries were integrated within one company. The same was true for

distribution and supply companies. National state-owned monopolies of electricity

production and distribution dominated the market until recently. But in contrast,

during the last decade many governments introduced competition in this sector.

Among the �rst countries to start deregulating were the UK (1990), Norway (1991),

Sweden, Australia and New Zealand (1995), Finland (1997) and Spain (1999). Dereg-

ulation in Germany and in the Netherlands started in 1999.

The degree of competition in a given electricity market can be measured by looking

at the concentration of suppliers and the size of transportation capacity. The liberal-

ization of electricity market and electricity generation in particular has attracted some

new players such as oil companies. However, the main result of the electricity mar-

ket liberalization has been a wave of mergers and acquisitions in Europe, especially

in Germany and the United Kingdom (see [35]). According to the EU�s statistical of-

�ce, Eurostat (see [36]), only ten member states had opened their markets completely

by September 2005: Denmark, Germany, Spain, Ireland, the Netherlands, Austria,

Portugal, Finland, Sweden and the UK.

Conventional thermal power stations still dominate electricity production, account-

ing for 58% of installed capacity in the EU, nuclear power accounts for 19% (half of

it in France alone), hydropower 18%, and wind turbines 5%. Wind power has made

the strongest progress since 2000. It increased its installed capacity by 154%. Wind

power is especially well developed in Denmark (23%), Germany (13%) and Spain (12%).

Cross-border trade in electricity is still limited by the interconnector capacity (see [36]).

4



2.2. STRUCTURE OF THE ELECTRICITY MARKET 5

Market deregulation allowed the creation of various �nancial instruments based

on electricity: from short- and long-term futures to options. Using futures contracts,

buyer and sellers can fend o¤ the danger of adverse price movements by locking in the

prices of a future transaction. Options allow holder to gain from favorable market de-

velopments while enjoying some level of protection against unfavorable developments.

Di¤erent kinds of electricity derivatives could be created but the �rst step in intro-

ducing more complicated �nancial products to the electricity market is understanding

how electricity prices themselves �uctuate; the second step is being able to price the

standard derivatives such as futures.

2.2 Structure of the electricity market

The purpose of the electricity industry is to convert primary energy (conventional fuels,

wind, water, uranium, etc.) into electricity and transport it to the �nal consumers

(factories, household, etc.). Electricity cannot be stored (except small quantity by

means of water reservoirs), moreover, electricity produced at any moment should be

immediately consumed, thus supply and demand of electricity have to matched at any

moment of time. The whole electricity industry is based on this the most important

and special feature of electricity as commodity. The process from producing electricity

to usage of electricity by customer can be divided into four main steps: generation,

transmission, distribution and retail.

2.2.1 Generation

Electricity can be generated by burning fuel such coal, natural gas, oil, biomass or

waste . Electricity could also be generated by the gravitational power of running water

from mountain rivers or lakes, by wind power, by solar power or by �ssion of enriched

uranium. Figures 2.1 and 2.2 present the shares of fuels for electricity generation in

years 1973 and 2003 and the evolution of electricity generation.

2.2.2 Transmission and distribution

Transmission is the transportation of electricity at high voltage (between 138 and 765

kilovolts). High voltage is used in order to minimize losses of electricity, because losses

of electricity are inversely proportional to voltage. Before entering the transformation

grid the voltage of electricity stepped up by transformers. After transmission the elec-

tricity is stepped down by the transformers and supplied to the customers using lower

voltage lines. Transformers, transformation networks and the lower voltage distribu-

tion lines are costly investment and are very costly to repair and thus regarded as a

natural monopoly
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Figure 2.1: Worldwide electricity generation in year 1973 and 2003. (Source: Key
World Energy Statistics, 2005 Edition, IEA (International Energy Agency).

Figure 2.2: Evolution of electricity generation form 1971 to 2003 (Source: Key World
Energy Statistics, 2005 Edition, IEA (International Energy Agency).
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2.2.3 Retail

Deregulation should transform the retail side of the electricity market. Instead of facing

a monopolistic electricity provider, customers should be able to select their preferred

provider form a pool of competing bidders.

Deregulation could also allow the emergence of merchant companies, that are cor-

porations that do not own generation assets or distribution networks but purchase the

power they sell from third parties and pay fees for using the network to network owners.

In practice, however, even though customers are often free to switch provider, few of

such merchant companies could establish themselves.

2.2.4 Trading

After deregulation trading mechanism for pricing electricity was established in order

to meet supply and demand. Trading is carried out between generating companies

and supply (or distribution) companies at Power exchanges such as Amsterdam Power

Exchange (APX) and European Energy Exchange (EEX). Contracts traded on these

exchanges are standardized. Spot electricity, futures and options are considered stan-

dardized products. In addition, OTC (over the counter) contracts are traded. We

consider them later in this chapter. In the following few sections we �rst describe

standardized electricity products. The market of electricity is divided into spot market

(day-ahead market), adjustment market (also called imbalanced or real-time market)

and forward market for trading futures and electricity derivatives (options and OTC

derivatives).

Spot price is the intersection point of demand and supply curves. The spot market

is usually organized as an auction for delivery of electricity in the near future. Thus

before producing electricity most of the electricity is sold via energy exchanges or OTC

(over-the-counter) electricity market.

Of course there are certain needs for reserves and imbalanced markets which use

these reserves. Reserves are needed because load may vary unexpectedly, for exam-

ple, because of weather conditions or because the generators may face unexpected

outages. The adjustment market is a market which uses reserve capacity to meet sud-

den demands on electricity or compensate outage of the plant. For the reserves there

are usually two possibilities. Firstly, the plants with high �exibility are used such as

quickly started gas turbines. They are rewarded with high prices during short periods.

Secondly, each generator is obligated to keep constantly 10-20% of their capacity dur-

ing peak hours for reserves. For example in the UK the capacity charges via so called

plant margins are applicable to all generators. These margins are vary widely between

di¤erent generators and electricity markets. See, for example, [7] for more information

about the linkage between day-ahead and real-time markets in the Netherlands.
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Any transaction on electricity derivatives market may be physical (with actual

delivery of electricity) or �nancial (a cash �ow from one party to another and no

actual delivery of electricity). Physical transactions still have a crucial importance

today, although �nancial transactions (especially futures) represent a big volume.

In the next sections of this chapter we consider �rst the unique properties of elec-

tricity in more details and then explain more about the spot and futures markets of

electricity.

2.3 Electricity as a unique product

As we already pointed out electricity has some speci�c characteristics which makes this

commodity so di¤erent from all other commodities, even such related ones as gas and

oil. Here are the main characteristics:

1. Non-storability

There are no e¢ cient ways to store electricity. Basically there is only one potential

way to store electricity - to use storages (reservoirs) of water on hydro generators.

As we saw on the Figure 2.1, only about 15% of all generators are hydro and

there are not available in all countries. For example, only 0,17% of electricity

production in the Netherlands is hydro1. Most of generators are still thermal and

we can say that electricity is non-storable. This distinctive characteristic leads to

so called spikes in the price dynamics (sudden jumps upwards, shortly followed

by steep downward moves to some average level).

The magnitude of the spikes is huge. For example on the EEX the prices of

electricity could jump from an average level of 40-50 euros per megawatt hour

(MWh) to 1000 euros or more in just few hours and drop to zero price at night.

See Figures 2.3 and 2.4 to compare spike sizes of EEX and APX market. We can

see that the price on the APX market is in general more volatile and the spikes

higher than 100 euros per MWh happen more often on the Dutch market.

If we consider averaged daily prices, shown on the Figures 2.5 and 2.6 of Base

prices from EEX and APX market respectively, we still can see strong mean-

reversion and the spikes, although not of the same amplitude. We can also see

increase in average price in the year 2005 which is explained by introducing

CO2 emissions permits in 2005. In general electricity is one of the most volatile

products of all commodities.

2. Spikes

1Source: Eurostat [36]
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Figure 2.3: EEX hourly prices in euros per MWh, January 2001 - December 2005

Figure 2.4: APX hourly prices in euros per MWh, January 2001 - December 2005
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Figure 2.5: EEX Base prices (daily average prices) in euros per MWh, January 2001 -
December 2005

Figure 2.6: APX Base prices (daily average prices) in euros per MWh, January 2001 -
December 2005
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Theoretically, if there is a total absence of the inventory, the price of electricity

could be unbounded, but on the exchanges maximum and minimum prices are

imposed. The reasons for such spikes and for prices to be volatile in general are:

(a) Constant need for balancing supply and demand because electricity is to be

consumed as soon as generated.

(b) Electricity demand shifts throughout the day.

(c) Demand is fairly price inelastic and is cyclical (weekdays versus weekend,

peak hours versus o¤-peak hours).

(d) The marginal cost of producing electricity is rapidly increasing as production

comes close to capacity.

(e) Supply can experience dramatic changes in case of planned or unplanned

outage of the plant or any failure in transmission.

3. Mean reversion

It can be seen on the Figures 2.3 - 2.6 and could be easily statistically checked

that there is mean reversion e¤ect of electricity price. The price moves around

some mean level and gets pulled back to this level rapidly after a spike.

4. Seasonal patterns

Electricity exhibits the most complicated cycle patterns on di¤erent time scales:

(a) Seasonal pattern through the calendar year. The prices are usually higher

in winter and in summer because of higher demand due to heating in winter

and cooling in summer.

(b) Seasonality within the week: the prices are higher during working days and

lower during weekends due to �normal producing cycles �.

(c) Seasonality within the day. Additionally to two mentioned above seasonality

patterns, electricity has di¤erent prices during di¤erent hours of the day.

The price is higher during so called peak hours (07.00-23.00 for APX and

08.00-20.00 for EEX) with respect to non-peak hours (23.00-07.00 for APX

and 20.00-08.00 for EEX) which is explained by human/industrial activity

cycles.

Note, that for example in Norway the spikes of electricity are much lower, but

seasonality is much more pronounced. The lower spikes level is due to the fact

that in Norway electricity is mostly produced by hydro power, which allows to

store some of amount water to produce electricity and use these storages in case
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of the spot prices are high. High seasonality is due to a natural cycle of water

temperature.

If there is also no evident trend in electricity prices. Only in year 2005 due to

an introduction of CO2 emissions regulations the prices of the electricity and

derivatives increased substantially.

2.4 Spot market

In this section we brie�y describe structure of the spot markets, particular for EEX

and APX, and variety of products usually traded on spot markets:

� Price is an intersection of demand and supply

Electricity price is determined as intersection of demand and supply curves. The

development of demand and supply on the APX and EEX spot markets is com-

pletely determined by market players themselves. Players are production and dis-

tribution companies, large consumers, industrial end-users, brokers and traders.

� Spot market is 24-hour head market

Spot electricity markets both in Germany (EEX) and the Netherlands (APX) are

24-hour ahead markets. This means that every day an auction takes place based

on the bidding from buyers and sellers of electricity and around 12am prices for

each hour of the next day are quoted. Thus the electricity spot market is not the

same as in classical de�nition of spot market of some commodity where delivery is

carried out immediately. The hourly instruments are subject to physical delivery

of electricity of a constant output on the electricity grid.

� Adjustment market

Because of non-storability of electricity the immediate delivery of electricity is

possible only in exceptional cases and carried out on a adjustment market. On

EEX and APX mostly hourly contracts are traded, but also the half-hourly con-

tracts on APX are available. (See [7]).

� The spot prices re�ect only physical contracts, but they are also bases for un-
derlying for many derivatives on electricity market, which could be either with

physical or �nancial delivery.

� With respect to delivery hours there are three types of contract on the spot
market: base load (00.00-24.00 for both markets), peak load (07.00-23.00 during

weekdays for APX and 08.00-20.00 during weekdays for EEX) and o¤-peak load

(23.00-07.00 during weekdays and 00.00-24.00 during weekends and holidays for
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APX and 20.00-08.00 during weekdays and 00.00-24.00 during weekends and

holidays for EEX).

2.5 Derivatives traded on electricity markets

The prices of the future contracts do not converge smoothly to the spot base prices

and the spot prices do not converge to adjustment market prices as they do in case of

storable commodity. The usual spot-forward relationship, when forwards are expected

spot prices, also does not hold. That is why one can consider electricity as dual

commodity, where dynamics of the spot and forward prices modelled separately. In

this section we give a more detailed overview of futures and options contracts traded

on organized exchanges and review the various derivatives products used to hedge risks

exposure of the spot prices.

2.5.1 Futures contracts

Before presenting di¤erent types of futures we should note that, though there are

certain di¤erences between futures and forward contracts, we consider them as the

same product. The reason for that lies in our pricing model, which assumes non-

stochastic interest rate and which makes forward and future prices for contracts with

same �xed maturity and underlying delivery periods to be of the same value (see, for

example, [16]).

A futures contract is a contract that obligates the seller of the contract to deliver

and a buyer of a future contract to receive a given quantity of electricity (1MWh) over

a �xed period [T0; T ] at a price K speci�ed in advance. Futures are usually used to

assure �xed delivery price of electricity delivered in some future period. The di¤erence

between electricity futures and other futures, is that electricity futures use averaged

spot price 1
n

PT
t=T0

S(t) as the underlying of the contract and not one �xed spot price

S(T ) as in most �nancial and commodity markets. Here n is the number of days during

the delivery period which is taken to calculate the average price.

Futures contracts are traded on the exchanges, they require the payment of margins

and they are standardized products in terms of their characteristics (maturity, delivery

period, quantity of underlying electricity).

Consider �rst the futures at time t on a spot electricity price S(T ) with a delivery

date T �xed in advance. The price of such a future at time t we denote by F (t; T ).

At time T , the futures price F (T; T ) is equal to the spot price S(T ). But what is the

price of future before delivery date T?

There is risk and a corresponding risk premium attached to spot market. Usually if

we consider future on spot price, the short-term futures are upward-biased estimators
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of the spot prices. This is used in case when t is close to time T or T � t is small.
That is why we express future price at time t as conditional expectation of the

future spot price S(T ) plus some risk-term premium over the period [t; T ]:

F (t; T ) = Et[S(T )] + �(t; T ):

We suggest that the risk-premium �(t; T ) is positive when T�t is small and negative
if T � t is big. Risk premium may be negative because long-term future/forward

contracts usually sold by generator as protection against variable demand, especially

by plants which do not have �exibility in the load, such as nuclear plants.

Futures are traded at the electricity exchanges or at OTC (over-the-counter) mar-

kets. Currently the most active electricity futures exchanges in Europe are

1. Nordic Power Exchange (NordPool) in Norway which covers Norway, Denmark,

Finland and Sweden.

2. European Energy Exchange (EEX) in Germany where futures with delivery in

the Netherlands, Germany and France and Phelix �nancial futures are traded.

3. Endex (European Energy Derivatives Exchange) in Amsterdam where Dutch

Power and Belgian Power futures are traded.

4. Paris Power Exchange (Powernext) which trades futures with delivery in France.

The NordPool exchange was one of the �rst exchanges in Europe to trade forwards

and at the moment it is the most liquid market, not only because of longer trading

history (operated from 1990s), but also because a big part of electricity traded on

NordPool is produced by hydro power, which could be stored and for this reason the

market is less volatile, closer in its characteristics to the usual �nancial market.

Di¤erent kinds of futures/forwards exist. We consider futures traded on Dutch and

German exchanges because we will use data from these markets to estimate the model

parameters.

� Futures are standardized products on both markets. Futures contract is a con-
tract to deliver electricity with the �xed rate of one MWh (Megawatt per hour)

during �xed delivery period. Thus, for example, a month April 2005 base future

will deliver in total 1MWh�24hours�30days= 720MWh of electricity in April

2005.

� There are futures with physical or cash settlement, called physical and �nancial
futures accordingly. Examples of �nancial futures on EEX market are Phelix
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Base and Phelix Peak futures. All Dutch-Power, German-Power and French-

Power futures on EEX are futures with physical delivery. On Endex only futures

with physical delivery in the Netherlands and Belgium are traded.

� Physical futures di¤er by geographical factor. For example on the EEX there are
futures with delivery in the Germany, Netherlands and France (German, Dutch

and French future contracts respectively). Endex trades futures for physical de-

livery in the Netherlands and Belgium. Some markets use another method to

hedge basic risk which is the di¤erence in the delivery prices between di¤erent

locations or price areas. For example NordPool has so called Contracts for Dif-

ference (CfD), which are forward contracts on the di¤erence between the delivery

price for speci�c area and the system price (NordPool market price).

� There are base, peak and o¤-peak loads futures. They have di¤erent underlying.
For example Phelix Base month futures have delivery for 24 hours per day during

delivery month and use Phelix Base load averages over month price as underlying,

Phelix future Peak contracts have delivery during peak hours between 8.00 and

20.00 during working days and use the averages of the corresponding Phelix Peak

load prices as underlying. On the Dutch market futures on Base, Peak and O¤-

peak hours are traded.

� Futures di¤er in delivery periods. For example EEX has futures with monthly,
quarterly and yearly deliveries. In some markets futures with longer delivery pe-

riods such as quarter and year delivery futures are ful�lled by cascading. Futures

with shorter delivery (such as month) are ful�lled by cash settlement. On the

NordPool weekly contracts are also available.

Cascading means the automatic splitting of the long-term contracts into contracts

with shorter maturity on the last trading day. For example, a year contract on

EEX is split two days before the start of its delivery period (calendar year, from

January to December) into three monthly contracts with delivery in January,

February and March and three quarterly contracts for second, third and fourth

quarter. Then two trading days before entering into second quarter delivery (be-

fore 1st of April), second quarter contract again splits into three month contracts

with delivery in April, May and June, and so on.

Available market data provides relatively good information about the short end of

term structure, but a much less detailed picture of the long end and the important

seasonal component.

� After signing the Kyoto agreement which commits countries to curb CO2 emis-
sions, new EU-allowance futures began to trade on European markets (both es-

tablished power markets like the EEX or Powernext and new markets like ECX).
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For example, on the EEX market there are two European carbon futures: for the

�rst period of three years 2005-2007 and for the second period of 5 years 2008-

2012. One contract allows emission of one ton of carbon dioxide or equivalent.

Regulations of CO2 emissions have had a huge impact on electricity markets.

� The number of futures tradable in the market varies from market to market. For
example on the EEX market at any day there are 19 types of futures traded:

futures based on the current and the six closest months, the seven closest quar-

ters and the six coming years. At Endex (future market with APX index as

underlying) 6 monthly, 6 quarterly and 3 yearly delivery futures are traded.

There are a number of margins which could vary from market to market. On EEX

for example there are additional margins, margin calls, intra-day margins. Smallest

price change is �xed (0,01 euro per MWh for EEX and APX markets).

Forward curve, i.e. the curve which represents the set of all available forward prices

as a function of their maturity, is a subject of careful analysis for the participants

of futures market, because the futures prices provide a measure of expected price of

power in the future. The forecasting ability of the futures prices to predict future spot

prices is one of the main factors of great value for futures markets. Futures result

from competitive trading and represent expected values of the underlying supply and

demand at various point in the future plus term premium. The arrival of news has

a large in�uence not only on the spot but also on future prices. Naturally all the

participants of the electricity market are particularly interested in the relationship

between current spot price, future prices and available inventory, but this is not the

subject of the present study.

2.5.2 Options on electricity

Valuing option is a big issue for market participants. Although a lot of literature is

available on pricing European options on forwards, there is hardly any literature on

valuing option contracts written on forwards for some delivery period. There are few

formulae available for approximations of the Asian options which have an average of

a stock price as underlying. On the electricity market however, options have futures

as an underlying of the contract and these futures from their part are based on the

averages of the spot price.

Probably it is one of the reasons why most European markets are very illiquid on

option trading. Of course as market develops options are expected to be more liquid

and new derivatives are expected to appear for trading at the exchanges. That is why

we have to know how we should price the options even if one can say that they are not

that important at the moment because there is no liquidity. At the moment on Endex
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in Amsterdam there are no available quotes for options, so we use in our analysis only

option prices from EEX market.

All the options on electricity markets are usually cash settled, thus have a �nancial

future and not a physical futures as an underlying. Basically there are two types of

options available on electricity market: European options on futures and Asian options

on spot.

� European-type options on �nancial futures

There are two kinds of European options exist: European Call option and Euro-

pean Put option.

The buyer of a European option has the right (but not the obligation) to buy the

underlying asset at the �xed time in the future at a �xed price called strike price.

For example, let us consider at time t the price of the electricity future contracts

F (t; T0; T ) with delivery between T0 and T . This futures contract is based on the

average of the spot prices during the period [T0; T ]. This futures contract in its

part is an underlying for the European options. A payo¤ function of European

Call option at time Te, called expiry of the option, with strike K on this future

contract is equal to max(F (Te; T0; T )�K; 0).

The buyer of a European Put option has the right (but not the obligation) to

sell the underlying asset at the �xed time in the future at �xed price K: A payo¤

function of European Put option at expiry time Te with strike K on the same

future contract is equal to max(K � F (Te; T0; T ); 0). The person who buys an
option is said to be in a long position, the seller of the option is said to be in a

short position.

European-type options on electricity market usually have the base, peak or o¤-

peak futures as underlying. Accordingly they are also distinguished by delivery

period of the underlying future. On the EEX there are Phelix Base options with

month, quarter and year Phelix Base futures as underlying. Options have same

delivery periods as underlying futures have. There are Call and Put options

with di¤erent strikes. Number of strikes increases with the time coming closer to

maturity of the option, which is the only exercise day of these options, which is

the same as last trading day of the corresponding option. For all month options on

EEX with delivery period other than January and quarter options with delivery

in second, third and forth quarter the last trading day is 4 days before the delivery

starts. For month and quarter Phelix options with delivery in January the last

trading day is third Thursday of preceding December and for year contracts it

is the second Thursday of preceding December. Of course exercise day has an

in�uence on the price of the option. For example the month option with delivery
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in January and December exercise di¤erent number of days before delivery, which

makes pricing formulas for these months to be di¤erent. There are also European-

type options based on Phelix Peakload futures available.

� Options on the spot price

Some other markets have also Asian options based on spot price averaged over

delivery period. The payo¤ of such Call option is equal to max( 1
n

PT
t=T0

S(t) �
K; 0), where n is the number of days during the delivery period and number of

points taken for averaging.

2.5.3 Derivatives traded on OTC

The OTC contracts are the contracts which are not traded on the exchange and could

be very complicated and client oriented. For example they don�t have �xed number of

the strikes and delivery periods to choose from and di¤er in contract speci�cations in

order to satisfy the wishes of both parties entering the contract.

Bulk contracts

One of the simple contracts is called the bulk forward contract which is sold by gener-

ating companies to big electricity consumers in order to �x price, amount of electricity

delivered and location of delivery in advance. These forward contracts have physical

delivery, payo¤s of these contracts are identical to futures traded on the market, but

payment of these contract di¤ers from client to client.

Floating contracts

Floating contracts are usually long-term contracts which have �xed amount of elec-

tricity to be delivered, but have �oating price. At every period owner pays short-term

�oating price. Floating contract is a substitute for constantly buying electricity of �xed

quantity on the spot market.

Caps and Floors

Cap provides the electricity price protection for the buyer of electricity above a pre-

determined level - the cap price - for a speci�c period of time. A �oor guarantees

a minimum price - �oor price. Caps can be considered as �oating contracts, but

with a maximum level of this �oating price, thus always more expensive than �oating

contract. Floorlet can be considered as �oating contracts with minimum level which

actually equivalent to the selling a series of put options to the seller of �oor.
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Swaps and Swaptions

Electricity Payer Swap is a �nancial contract between to parties which obligates the

buyer to pay a �xed price for the underlying electricity and receive the �oating spot

electricity price over the contracted time period. The electricity Receiver Swap is a

contract which obligates the buyer to receive �xed price for electricity in exchange to

�oating spot market price. This contract typically has �xed quantity of electricity and

uses spot price at location of either producer or consumer of electricity. These contracts

are widely used to hedge against short- or medium-term uncertainty in the market.

The payo¤ P of vanilla Payer Swap at any future swap date can be expressed as

P (t) = S(t)�K;

where S(t) is a spot price at time t, K is �xed price. The swap is a contract which

consists of number of such payo¤s in the future.

There exist variable volume swaps, di¤erential swaps, crack swaps, participation

swaps, double-up swaps, extendable swaps and so on. For example locational swaps

can use the spot price of electricity exchange located in the other location, not the

delivery location, as �oating price of a contract. For an overview about these swaps

one can check for example [9].

Swing options

The swing option gives its holder the �exibility in the quantity of electricity to be

delivered to him. The volume of electricity delivered can swing from some minimum

to some maximum limits. These options give the holder of the option some security

against the uncertainty in the volume of electricity to be consumed. The amount of

electricity consumed by industrial parties can vary because of uncertainty in production

volumes.

Thus the basic swing contract allows the holder of this contract to swing the amount

of the base load of energy delivered with maximum (up-swing) and minimum (down-

swing) daily and global (over whole delivery period) amount de�ned. So, the amount

of electricity can vary daily between some daily limits, global limits for whole contract

also exist. There are also restrictions on how many times (days) during the time in the

contract the holder of this option is allowed to swing the amount of energy delivered.

Contracts for Di¤erence (CfD)

Contracts for Di¤erence (CfD) are forward contracts on the di¤erence between speci�c

area delivery price and some system price. A Contract for Di¤erence is a purely

�nancial transaction that involves no physical delivery. The contract must precisely
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specify the term, the underlying quantity and the prices of electricity. Compensation

is paid for price di¤erences over periods agreed in advance - monthly, quarterly or

half-yearly. Such contracts are traded for example on NordPool for di¤erence between

price in particular country, say Sweden, and system price of NordPool.

Cross commodity derivatives

There are two main classes of cross commodity derivatives: spark-spread options and

locational options

� spark spread options (also called heat rate linking derivative).

It is the most important cross commodity option on electricity market. The spark

spreads are derivatives which are linking electricity with a particular fuel used

to generate electricity. The spread between electricity price and price of fuel is

of interest because it is the main product to determine the economic value of

generation assets. The amount of fuel needed for generating given amount of

electricity is given as heat rate, which is number of units of fuel requested for

generation of one megawatt hour (MWh) of electricity. The lower the heat rate

the more e¢ cient the generation and the higher is the price of the spark spread,

which is de�ned as the di¤erence between electricity price and the product of the

heat rate and fuel price. The option written on this di¤erence is called spark

spread option.

The payo¤ of the European Call spark spread option at time T is:

max(SE(T )�HFSF (T ); 0);

where SE(T ) is the price of electricity at time T , SF (T ) is the price of fuel F and

HF is a heat rate for the fuel F . Heat rate is sometimes called "strike" of the

spark option.

� locational spread options

Locational spread options are the options written on the di¤erences in the electric-

ity prices at di¤erent locations (di¤erent electricity markets). These di¤erences

exist due to transmission constraints and transmission costs associated with the

price of electricity.

The payo¤ of the locational spread option at time T is

max(S1(T )� S2(T ); 0);

where S1(T ) is the price of electricity at time T at location 1 and S2(T ) is the

price of electricity at time T at location 2.
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Interruptible contract

Interruptible electricity contracts are the contracts issued by distributors or suppliers

of electricity, that allow for interruptions to electric service. In exchange for a possi-

bility of interruptions usually a reduction in the price of electricity delivered is o¤ered.

Sometimes �nancial compensation at the time of interruption is a substitute for a price

reduction, this compensation depending on how far in advance noti�cation about future

interruption was announced. These contracts allow distributors of electricity to shift

supply of electricity at peak hours or electricity failure from parties with interruptible

contracts to the parties with non-interruptible contracts in order to meet demand and

minimize the costs.

Weather derivatives

Most of derivatives considered before are used to hedge either price or volume risk.

Although weather derivatives do not speci�cally include electricity prices in their payo¤,

they can be use on electricity market to hedge risks of changing demand and supply.

Weather, more precisely outside temperature is one of the main factors of demand

changes. Water temperature and precipitations in�uence supply side. Contracts based

on heating degree days (HDD) or cooling degrees days (CDD) are traded, although

liquidity is still lacking in Europe.

We did not include many other derivatives used for hedging risks arising in the

electricity market.



Chapter 3

Data analysis

In this chapter we present a brief analysis of the data we use to estimate our model (see

Chapter 5). We compare statistics, present seasonality and volatility analysis for the

spot and futures on two di¤erent markets: EEX and APX/Endex, and present results

of implied volatility estimations for EEX options market.

3.1 Spot analysis

3.1.1 Descriptive statistics

First we present descriptive statistics for the hourly, peak, o¤-peak and base prices

for the EEX and APX spot markets. We calculate mean, median, standard devia-

tion, maximum and minimum value, skewness and excess kurtosis for electricity spot

prices (S) and for the log returns of electricity spot prices (� ln(S)). Empirical mean,

standard deviation, skewness and kurtosis are four moments of empirical distribution.

The (sample) mean is

Mean(S) =
1

n

nX
k=1

Sk;

where Sk is the spot price at time k = 1; : : : ; n.

The median is such a value, that half of Sk are greater than the median, and half

of Sk are less than median. The median is less sensitive to outliers than the mean.

The (sample) standard deviation of S is:

Std.Dev.(S) =

vuut 1

n� 1

nX
k=1

(Sk �Mean)2 =: �:

22
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Figure 3.1: Monthly EEX futures prices, July 2002 - December 2005
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EEX APX
S � ln(S) �D2 S � ln(S) �D

Mean 30:12 0:00 0:00 38:75 0:00 0:00
Median 26:55 �0:01 0:00 28:50 -0:02 0:01
Std.Dev. 23:54 0:28 0:20 60:27 0:49 0:47
Maximum 1719:72 11:51 4:30 2000:00 7:84 7:81
Minimum 0:01 �10:60 �3:92 0:01 �8:16 �3:92
Skewness 15:72 0:72 �0:01 14:17 0:52 0:13
Kurtosis 762:23 249:38 49:50 320:80 94:18 110:38

Table 3.1: Descriptive statistics of Hourly EEX and APX prices, log returns and de-
seasonalized log returns, January 2001 - December 2005

Skewness is calculated by

Skewness(S)=
1

(n� 1) �3
nX
k=1

(Sk �Mean)3 ;

and excess kurtosis is calculated as

Kurtosis(S)1 =
1

(n� 1) �4
nX
k=1

(Sk �Mean)4 � 3:

The descriptive statistics of EEX and APX electricity hourly prices from January

2001 till December 2005 and log returns are shown in Table 3.1. (Statistics for the

price levels are given for indicative purposes. The price levels may not be stationary

and unconditional moments may not exist.)

Skewness is a measure of the degree of asymmetry of a distribution. The skewness

of a symmetric distribution is zero, and positive skewness indicates that the random

variable is skewed to the right, which mean that right (higher value) tail is longer. As

we can see from the Tables 3.1 and 3.2 that in both markets (EEX and APX) skewness

of log returns is positive, thus the prices for both markets are right skewed.

Kurtosis is a measure of the �peakedness�and also "fatness" of tails of the proba-

bility distribution, since the probabilities integrate to one. It shows whether the data

are peaked or �at relative to a normal distribution. The kurtosis for a standard normal

distribution is three. That is, data sets with high kurtosis tend to have a distinct peak

near the mean and have heavy tails. As we can see from Table 3.1 kurtosis for both

1From here on we use a term Kurtosis for an excess kurtosis of the Sample, which is the Sample
kurtosis minus 3, which means when �excess kurtosis�is positive, there is greater kurtosis than in the
normal distribution.

2Here deseasonalized logarithms Dt of the hourly prices St are calculated as follows: at the hour
i, the deseasonalized prices Di

t = ln(Sit) � Ai, where Ai is the average of the logarithms of all ith
hour prices. Corresponding returns of deseasonalized log prices �D are de�ned as �Dt = Dt�Dt�1.
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EEX APX
S � ln(S) S � ln(S)

Mean 30:12 0:00 38:77 0:00
Median 27:84 �0:04 31:35 �0:03
Std.Dev. 15:59 0:33 33:48 0:44
Maximum 240:26 2:37 660:34 3:54
Minimum 3:12 �1:96 2:05 �2:53
Skewness 3:92 0:88 8:70 0:80
Kurtosis 32:53 4:48 130:78 6:45

Table 3.2: Descriptive statistics of Base EEX and APX prices and log returns, January
2001 - December 2005

Figure 3.2: Histogram of the log returns of EEX hourly prices, January 2001 - Decem-
ber 2005

markets is very high, which means the tails of distribution are fat. Higher kurtosis

means more of the variance is due to infrequent extreme deviations, or spikes, which

are distinctive characteristic of electricity prices.

The histograms of the log hour prices for EEX and APX are presented in the Figure

3.2 and Figure 3.5. Big spike in the middle of histograms for log returns is an e¤ect of

rounding the prices to �0:01. From these graphs we can see that log returns of hourly
prices have very peaked distribution, which is also con�rmed by high kurtosis values

in the Table 3.1.

The descriptive statistics of EEX electricity Base Phelix prices from January 2002

till December 2005 and for APX daily prices from July 2001 till December 2005 are

shown in the Table 3.2.

Corresponding histograms of the log returns of Base EEX and APX prices are

presented in the Figure 3.6 and Figure 3.7. These graphs also show peaked and visibly
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Figure 3.3: Monthly Endex futures prices, January 2003 - December 2005
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Figure 3.4: Quarterly EEX futures prices, July 2002 - December 2005
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Figure 3.5: Histogram of the log returns of APX hourly prices, January 2001 - Decem-
ber 2005

right skewed distributions, especially for APX market. As expected, log returns of

hourly prices for both markets have higher volatility, skewness and much higher kurtosis

than corresponding log returns of Base prices.

If we consider deseasonalized hourly prices with respect to hour e¤ect in the follow-

ing way:

Dt = ln(S(t))� At;

where Di are deseasonalized logarithms of the price at ith hour, ln(S(t)) is the loga-

rithm of the ith hour price and At is the mean of the logarithm of ith hour price for

both markets (EEX and APX), then we can calculate descriptive statistics for these

deseasonalized prices and we present then in the Table 3.1.

Because the price levels exhibit more positive spikes than negative and the log

returns can exhibit both positive and negative spikes, the distributions of the log returns

and the deseasonalized log returns are more symmetric (their skewness closer to zero).

Histograms of the changes of the deseasonalized hourly data for EEX and APX

market are presented on the Figure 3.10 and Figure 3.11. As we can see from the

histograms and the statistics for skewness and kurtosis, after deseasonalizing the data

are less skewed (more symmetric) and have lower kurtosis.

3.1.2 QQ plots

The quantile-quantile (QQ) plot is a graphical technique for determining if two data sets

come from populations with a common distribution. The normal QQ plot graphically

compares the distribution of a given variable to the normal distribution (represented

by a straight line). A QQ plot is a plot of the quantiles of the �rst data set against
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Figure 3.6: Histogram of the log returns of EEX Base prices, January 2001 - December
2005

Figure 3.7: Histogram of the log returns of APX Base prices, January 2001 - December
2005
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Figure 3.8: Quarterly Endex futures prices, January 2003 - December 2005
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Figure 3.9: Yearly EEX futures prices, July 2002 - December 2005
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Figure 3.10: Histogram of deseasonalized log returns of EEX hour prices, January 2001
- December 2005

Figure 3.11: Histogram of deseasonalized log returns of APX hour prices, January 2001
- December 2005
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the quantiles of the �tted normally distributed data set. By a quantile, we mean the

fraction (or percent) of points below the given value. That is, the 0.3 (or 30%) quantile

is the point at which 30% percent of the data fall below and 70% fall above that value.

QQ plots of log returns of EEX and APX hour prices are presented on the Figures

3.15 and 3.16. QQ plots of EEX and APX base prices are presented on the Figures

3.17 and 3.18.

These graphs reveal that the hourly log returns have fatter tails than Normal dis-

tribution. The tails of daily log returns are less fat than the tails of hourly log returns.

These graphs also show that daily and hourly log returns on the APX have fatter tails

than those on the EEX.

3.1.3 Volatility estimations

Volatility is found by calculating the annualized standard deviation of changes in price

over a given period. Volatility of the spot process can be estimated in two ways. A

standard way of estimating volatility for a given underlying is to use the price of an

option on that underlying. This volatility is called implied volatility. Unfortunately we

do not have options based on the spot price. We only can observe quotes of the options

based on futures. We calculate implied volatilities based on these options in the next

section 3.2 where we present data analysis of futures prices.

Another approach to estimating volatilities is to apply techniques of time series

analysis to historical data. Volatilities calculated in this manner are called historical

volatilities.

Historic volatilities

There are di¤erent ways of computing historic volatility. Hourly log volatility is the

standard deviation of the log of the ratio of prices during the same hour on consecutive

days. We analyze the prices of the same hour of a day to exclude the seasonality across

the day from the hourly prices. Daily log volatility is the logarithm of the ratio of the

average prices on consecutive days. And the rolling volatility is calculated over 30 days

using the standard deviation of the log-ratio of daily average prices.

Because in our future analysis we use only daily prices, we do not calculate hourly

volatilities here, but only daily and rolling historic volatilities.

We already calculated daily volatilities in the section 3.1.1, where we presented the

descriptive statistics for the spot prices. We used EEX Base and APX Base spot price

for the calculations of standard deviation of log return and the results are presented

in the section above where we presented descriptive statistics. Standard deviation of

log returns for EEX Base spot prices was 0:33 and for APX Base spot prices was 0:44.

These volatilities are daily volatilities. Because volatilities are usually quoted on an
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Figure 3.12: Yearly Endex futures prices, January 2003 - December 2005
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Figure 3.13: ATM implied volatility derived from EEX monthly options prices (with
interest rate r = 0:03), January 2005 - December 2005

Figure 3.14: ATM implied volatility derived from EEX yearly options prices (with in-
terest rate r = 0:03), January 2005 - December 2005
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Figure 3.15: QQ Plot of log returns of EEX hourly prices versus Normal, January 2001
- December 2005

Figure 3.16: QQ Plot of log returns of APX hourly prices versus Normal, January 2001
- December 2005
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Figure 3.17: QQ Plot of log returns of Base EEX prices versus Normal, January 2001
- December 2005

Figure 3.18: QQ Plot of log returns of Base APX prices versus Normal, January 2001
- December 2005
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Figure 3.19: ATM Call options prices, EEX data

Figure 3.20: Modeled ATM Call options prices, calculated using estimated parameters
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Figure 3.21: Rolling 30-day volatility of EEX base prices, January 2001 - December
2005

Figure 3.22: Rolling 30-day volatility of APX base prices, January 2001 - December
2005
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Figure 3.23: 30-day moving average of EEX Base prices versus their variance, January
2001 - December 2005

Figure 3.24: 30-day moving average of APX Base prices versus their variance, January
2001 - December 2005
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annual basis such daily historical volatilities are routinely converted to an annual basis

by applying the square root of time rule. The resulting volatilities are referred to as

annualized volatilities. Annualized volatilities for EEX and APX Base prices are thus

0:33 �
p
365 ' 6:30 and 0:44 �

p
365 ' 8:41 accordingly.

The 30-day rolling volatility for EEX and APX base prices are shown in Figure 3.21

and Figure 3.22.

As we can see that the volatility changes with time. It changes from around 20 per-

cent to almost 90 percent. One also can see so called �clustering e¤ect�of the volatility

on the Figures 3.21 and 3.22, which suggests using GARCH model for estimations of

volatility. It is not clear if volatility has seasonality, but it is usually suggested that

volatility is price dependent. To check for this property of volatility we plot 30-day

moving average of a spot price versus square root of the variance of the same 30 days.

Thus for each time point t we consider the spot prices process S(t) and then we plot�P29
i=0 S(t� i)

�
=30 versus VarfS(t� i)gi=29i=0 ).

This log-log plots for EEX and APX Base prices are presented n the Figures 3.23

and 3.24.

On these pictures we can see that variance of the price is correlated with the price

levels, but there is no obvious linear dependency between this two quantities.

3.1.4 Seasonality

As we mentioned before, electricity exhibits the complicated seasonality patterns. We

distinguish within-day hourly and weekly seasonal patterns, and a seasonality over the

years. We use term �seasonality�for regularities in the prices.

Electricity price has di¤erent behavior during working hours, so called Peak hours

(07:00-23:00 for APX and 08:00-20:00 for EEX), and during night hours (23:00-07:00

for APX and 20:00-08:00 for EEX). To show the within-day seasonality we present the

graphs with the hourly EEX and APX prices for seven consecutive days in December

2005 (Figures 3.25 and 3.26).

As we can see peak prices are much higher than o¤-peak hours for both markets.

December 10th and 16th are Sunday and Saturday correspondingly and the prices are

lower during these weekends and higher during working days. EEX and APX prices

increase at about 07.00 when day activity is starting. EEX prices show two peaks

around 11:00-12:00 and 17:00-18:00. APX price shows more pronounced peak at about

18:00. Evening peaks happen usually during the time when most people leave their

o¢ ces and start more intensive consumption of electricity at home. After 20:00 prices

are low again.

There are also weekly cycles in the base spot prices. Base prices are most of the

time lower during Saturdays and Sundays and higher during weekdays.
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Figure 3.25: EEX hourly prices for 10th-16th of December 2005

Figure 3.26: APX hourly prices for 10th-16th of December 2005
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It is di¢ cult to say if electricity has some regularity in the yearly Base price for

either EEX or APX market. There are di¤erent levels of the price through the year,

but it is not clear if these di¤erences have some regularity.

3.2 Futures analysis

In this section we present statistics for the futures prices, which will help us to choose

an appropriate model for futures price modeling. We consider EEX futures based on

the averages of EEX Base prices and Endex futures which use averaged APX base spot

electricity prices and underlying.

First we present a graphical representation of all monthly, quarterly and yearly

futures for EEX and Endex market. Monthly futures are presented on the Figures 3.1

and 3.3. Quarterly futures are presented on the Figures 3.4 and 3.8. Yearly futures are

presented on the Figures 3.9 and 3.12.

We can clearly see that monthly futures are more volatile especially during the

delivery month. The prices of the yearly futures are monthly smoothly together. We

can also see from these Figures that EEX futures in general are less volatile than the

Endex futures, which is explained by the less volatile EEX spot Base prices with respect

to APX spot Base prices as we saw in the section 3.1.

Because futures in general, and futures with one month delivery in particular, have

too short a history to analyze their behavior properly, we should generate some uniform

futures series from the data available in the market.

We use market data to generate futures with �xed time to delivery. We will create

three di¤erent data series for each market with one month to delivery, one quarter to

delivery and one year to delivery and will analyze these time series. For example, we

generate one-month-to-delivery future as follows: in July 2002 we use the price of a

one-month future delivering in August 2002, in August 2002 we use the price of the

month future with delivery in September, and so forth. Of course natural problems

arise during switching from one future series to another. Monthly futures are based on

the averages over the delivery month and these averages di¤er from month to month.

We will get jumps in the prices, which are not observable in the prices and which do not

re�ect reality of the market. We will exclude these data points and will not use them

for our analysis. More precisely, for calculation of descriptive statistics of the rolling

one-month-to-delivery future we exclude the prices for the �rst and the last days of

the month. For graphical representation we linearly interpolate these two points (the

prices on the �rst and last day of the month) in order to have equally dispersed quotes.

These rolling EEX and Endex futures are presented on the �gures 3.27 and 3.28.

As for the rolling one-month-to delivery futures we exclude two points on the border

from one quarter to another (and two points which separate two consecutive years) and
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Figure 3.27: Rolling EEX futures, July 2002 - December 2005

linearly interpolate these missing points for graphical representation.

We present descriptive statistics for rolling EEX and Endex one-month-to-delivery

futures in the Table 3.3.

QQ plots for rolling one-month-to-delivery futures are presented on the Figures 3.29

and 3.30

Now we consider rolling one-quarter-to-delivery future and present descriptive sta-

tistics for rolling EEX and Endex futures in the Table 3.4.

QQ plots for rolling one-month-to-delivery futures are presented on the Figures 3.31

and 3.32

Descriptive statistic for rolling one-year-to-delivery EEX and Endex futures are

EEX Endex
S � ln(S) S � ln(S)

Mean 34:12 0:0007 44:27 0:0006
Median 32:04 0:0003 41:09 0:0002
Std.Dev. 9:56 0:012 10:33 0:014
Maximum 68:47 0:09 77:82 0:11
Minimum 21:55 �0:07 30:00 �0:08
Skewness 1:15 0:49 1:06 0:93
Kurtosis 0:93 9:90 0:40 13:20

Table 3.3: Descriptive statistics for rolling one-month-to-delivery EEX futures (July
2002 - December 2005) and Endex (January 2003 - December 2005) and log
returns
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Figure 3.28: Rolling Endex futures, January 2003 - December 2005

EEX Endex
S � ln(S) S � ln(S)

Mean 33:92 0:0009 43:81 0:001
Median 31:37 0:0004 41:13 0:0003
Std.Dev. 9:11 0:0092 9:42 0:012
Maximum 66:74 0:09 76:77 0:08
Minimum 22:15 �0:06 30:00 �0:09
Skewness 1:11 0:95 1:25 0:77
Kurtosis 0:81 13:43 0:79 11:59

Table 3.4: Descriptive statistics for rolling one-quarter-to-delivery EEX futures (July
2002 - December 2005) and Endex (January 2003 - December 2005) and log
returns

EEX Endex
S � ln(S) S � ln(S)

Mean 32:77 0:0006 41:03 0:0008
Median 32:90 0:0004 39:39 0:0005
Std.Dev. 6:87 0:006 7:75 0:007
Maximum 53:55 0:03 61:47 0:05
Minimum 23:65 �0:07 30:83 �0:06
Skewness 0:63 �1:79 0:79 �0:83
Kurtosis �0:17 22:25 �0:26 16:91

Table 3.5: Descriptive statistics for rolling one-year-to-delivery EEX and Endex futures
and their log returns
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Figure 3.29: QQ plot of log returns of rolling one-month-to-delivery EEX future versus
Normal, July 2002 - December 2005

Figure 3.30: QQ plot of log returns of rolling one-month-to-delivery Endex future ver-
sus Normal, January 2002 - Decemebr 2005
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Figure 3.31: QQ plot of log returns of rolling one-quarter-to-delivery EEX future versus
Normal, July 2002 - December 2005

Figure 3.32: QQ plot of log returns of rolling one-quarter-to-delivery Endex future
versus Normal, January 2003 - December 2005
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Figure 3.33: QQ plot of the rolling one-year-to-delivery EEX future versus Normal,
July 2002 - December 2005

presented in the Table 3.5.

Finally, QQ plots of the log returns of the rolling one-year-to-delivery EEX and

Endex futures are presented on Figures 3.33 and 3.34.

As we can see from the standard deviation values, monthly futures are more volatile

than quarterly futures and quarterly futures are more volatile than yearly futures.

From the QQ plots we see that the tails of monthly futures are fatter than the tails of

quarterly and yearly futures. Amazingly, though yearly and quarterly contracts have

lower values of kurtosis and skewness for the price levels, they do not have lower kurtosis

and skewness values for the log returns, which could be explain by arti�cial nature of

data used for estimation. More precisely, removing two points at the beginning and

the end of each delivery period does not completely smooth out the high di¤erences in

the prices between di¤erent contracts. Compare, for example, prices of Endex futures

for the calendar year 2004 at the end of December 2003 and the Endex future for

the calendar year 2005 at the beginning of January 2005 (see Figure 3.12). Thus the

price of rolling one-year-to-delivery futures drops from 42.38 euro to 36.03 euro per

Megawatt hour in just three days. This change is more visible in the log returns of the

prices. Of course such changes in the price make our estimated descriptive statistics

for the log returns to be not accurate and we should account for these �rolling errors�.



3.2. FUTURES ANALYSIS 49

Figure 3.34: QQ plot of the rolling one-year-to-delivery Endex future versus Normal,
January 2003 - December 2005

3.2.1 Futures seasonality

As we saw in the section 3.1.4 analyzing spot prices electricity has complicated cyclic

patterns. It is not clear from the graph wish show di¤erent spot prices dynamics if

the spot price is seasonal over the year. Futures on the other hand exhibit seasonality.

First of all, the futures on electricity are quoted once a day and based on the averages

of the spot price. Thus naturally we do not see e¤ects of daily and weekly seasonality

patterns. But the e¤ect of seasonality over calendar year is visibly more pronounced

on the graphs of future prices then on the graphs of spot prices.

Because of the fact that futures prices have several time dimensions (current �run-

ning �time and time of delivery), it is di¢ cult to uniformly de�ne what is seasonality

of the futures prices. One can ignore the dependence of the futures prices on delivery

period and consider uniform seasonality function depending on current time. As in [6]

and [4] we consider the monthly futures price F (t; T ) , where T is the expiry month, to

depend on two seasonal factors: a(t) - an average price of all month futures traded at

the market on day t - and b(T ) - average of all the prices of one speci�c future expiring

at time T . Thus our seasonal function F (t; T ) = a(t) + b(T ) + "(t; T ) (where "(t; T ) is

the error), depends linearly on two components in di¤erent time dimensions.

We consider the above method and di¤erent possibilities to model seasonality func-

tion in more details in Chapter 6. Figures 3.35 and 3.36 show estimated a(t) and b(T )

for EEX and Endex monthly futures.
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Figure 3.35: Common time factor a(t) and expiry e¤ect factor b(T ) for EEX monthly
futures, July 2002 - Decemeber 2005

Figure 3.36: Common time factor a(t) and expiry e¤ect factor b(T ) for Endex monthly
futures, January 2003 -December 2005
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3.3 Options analysis

Option prices are available only for EEX market. There are Put and Call options on

monthly, quarterly and yearly futures. These options are traded only from the end

of 2004, we will consider only quotes from 1st of January 2005 till 30th of December

2005. To analyze options behavior we calculate the implied volatility from the options

quotes. Implied volatility for an option price C by de�nition is such a value of the

volatility parameter � in Black-Scholes formula for calculating options values that gives

calculated option value to be equal C. We used formulae 5.34 and 5.35 to calculate

implied volatilities from given Call and Put quotes from the market. As we mentioned

before, options market is very illiquid, we often can see option quotes of 0:01 euro,

which means that option prices reach their minimum allowed price in the market and

there are arbitrage opportunities. Almost a �fth part of all quotes have either Call

or Put price equal to 0:01 euros, or Call-Put parity does not hold. We remove these

quotes before calculating the implied volatilities. Also most of the options quotes do

not actually have any traded volume or open interest. This means that a lot of quotes

actually are set be the exchange and are not results of fair trading.

Implied at-the-money (ATM) volatilities derived from monthly and yearly EEX

Call options are presented in the Figures 3.13 and 3.14.

Here we removed all unrealistic values of the implied volatility (less than 10% for

monthly options and less than 5% for yearly quotes) and did not calculated the implied

volatilities from the option values too close to expiry of the option (few days before

expiry), because volatility parameter grows dramatically in just few days (up to 10

times) and makes it di¢ cult to calculate volatility precisely.

As we can see from these �gures, implied volatility is higher for the monthly options

than for yearly options, which is explained by the higher volatility of the underlying

monthly futures with respect to yearly futures as was shown in the section 3.2. It is also

similar time dependence in volatility values for monthly and yearly options. Thus the

stochastic volatility models we present in the next chapter 4 or at least deterministic

but time-dependent volatility function seems to be appropriate for better volatility

modeling.



Chapter 4

Pricing models for electricity

4.1 Modeling approaches for electricity prices

There are three di¤erent ways to model electricity prices. We use the work of Anderson

[1] to present these di¤erent approaches for electricity modeling. According to these

approaches all models are divided into three groups of models:

1. reduced-form models or, as we call them, �nancial models, where the price of

electricity is modeled directly

2. fundamental models, which use production fundamentals to determine the mar-

ginal cost of electricity

3. hybrid models, which are mixtures of �nancial and fundamental models.

The fundamental models were developed and used under the regulated electricity

market system. These models use optimization procedure to minimize total costs of

production of electricity under constrains from demand side and environment. Those

models use three main sets of input parameters:

1. Parameters for detailed speci�cation of the loads for speci�c regions,

2. Generation characteristics, such as fuel costs, heat rates, failure characteristics,

type of generation and capacities,

3. Parameters of environmental, operational and transmission constraints.

These models are usually very detailed and have non-linear relationships between

all the inputs and drivers in the price process. These models also have to take into

account uncertainties about each of these parameters. The fundamental approach has

two main disadvantages:

52
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First, for each di¤erent scenario these models should be re-speci�ed and optimized,

which makes simulations impractical because of high computational expenses.

Second, there is no mechanism to impose existing electricity prices into the com-

putations. This is because all the prices are based on the cost of production under

speci�ed constraints and do not depend on the market data. This makes is hard to �t

forward curves for example.

In contrast, �nancial models specify spot prices of electricity directly. As can be

observed in the market, the spot and futures/forward electricity prices are random

and thus can be modeled by stochastic models with speci�c properties which match

characteristics of the price process we are looking for and �t historical data. These

models try to �t market electricity prices into a framework using several parameters.

In some cases (for example when log returns are assumed to be normally distributed)

such models produce closed form solutions for European options and futures.

The third types of models are called hybrid models as they combine characteristics

of fundamental and reduced-form models. The key issue with reduced-form models is

a lack of su¢ cient data for �tting. This problem could be solved by hybrid models,

which can incorporate large set of historical data available for fundamental models and

�exibility and simplicity of reduced-form models. Good examples of hybrid models can

be found in [1]. From now on we consider reduced-forms models only.

In order to �nd appropriate model for spot/futures electricity prices we �rst need

to agree which properties of observed prices are the most important and have to be

captured. For example, as soon as we would like to model electricity futures prices and

not interested in capturing spot prices behavior beyond needs for futures modeling,

we will not consider jumps which could capture the spikes of the spot prices, but not

necessary for futures prices, based on spot averages.

Secondly, if we want to develop stochastic model for electricity prices we can con-

sider existing �nancial models for stocks and other commodities, which are used for a

few decades already and are well known. Choosing an appropriate stochastic process

model we should try to capture empirical moments (empirical mean, standard devi-

ation, skewness and kurtosis), known characteristics of the process (mean reversion,

seasonality, spikes) and observed dynamics of the price process.

In the next sections we brie�y introduce classical �nancial models which could be

consider for use in calculating of electricity prices and futures prices. We consider an

asset price S(t) at time t. See for example German [16] for more details on the models

we describe below.
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4.2 Geometric Brownian Motion

The simplest, but very important model for stock returns is a Geometric Brownian

Motion model:

dS(t)

S(t)
= �dt+ �dW (t);

here W (t) is a standard Brownian motion, � is the expected return per unit of time,

also called drift and � is the standard deviation of the return per unit of time, also

called volatility. Both � and � are constant. Using Itô formula we can express this

formula as follows:

d lnS(t) =

�
�� 1

2
�2
�
dt+ �dW (t):

This model was used by Black and Scholes [3] and Merton [25] to derive their

celebrated options on stock pricing formula. Stock returns in this model are normally

distributed. Also according to this model stock prices on average are growing over time

(with the constant rate �). For commodities however this is not true in general.

4.3 Mean reversion Ornstein-Uhlenbeck model

To avoid the growth of returns over time Vasicek introduced mean-reversion Ornstein-

Uhlenbeck model capturing interest rates dynamics. Dynamics of interest rate r(t) is

presented as follows:

dr(t) = �(� � r(t))dt+ �dW (t);

where �; � and � are constant. Parameter � is called the speed of mean-reversion or

the rate of mean-reversion, � is the long-term mean and � is the volatility.

As we saw on the Figures 2.5 and 2.6 of Base prices from EEX and APX market in

the Chapter 3, there is visible mean-reversion e¤ect of the spot prices on both markets.

Thus, to model energy we want to keep the geometric Brownian motion and introduce

mean reversion, thus we can consider returns to revert to its mean. Thus we present

the following modi�cation of the model:

X(t) = lnS(t);

dX(t) = �(� �X(t)) + �dW (t):

This model can capture mean reversion e¤ect documented for most energy commodities

and electricity in particular. We model the logarithm of the spot price instead of

modeling price levels themselves to make sure that the modeled prices are non-negative.

Another modi�cation which improves the possibility of the model to �t market data is
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an introduction of seasonality component into the model:

lnS(t) = h(t) +X(t);

dX(t) = �(� �X(t)) + �dW (t);

where h(t) is a deterministic component used for taking into account seasonality of

the prices. We present several possibilities to introduce seasonal components into the

model later in Chapter 6.

4.4 Schwartz-Smith two-factor model

The way to combine two models presented above was shown in the Schwartz and Smith

model (see [29]). In this model two sources of randomness are considered. Logarithm

of electricity spot prices is expressed as a sum of two factors:

ln(S(t)) = �(t) + �(t);

where �(t) is a short-term deviation in price, �(t) is the equilibrium price level. The

short-term deviations (�(t)) are assumed to revert toward zero following an Ornstein-

Uhlenbeck process:

d�(t) = ���(t) dt+ �� dW�(t);

and the equilibrium level (�(t)) is assumed to follow a Brownian motion process

d�(t) = �� dt+ �� dW�(t):

4.5 Jump di¤usion model

The primary drawback of log-normal models presented before is the lack of kurtosis

in the tails of distribution which is observed on spot market (see Chapter 2 for data

analysis of spot ad futures electricity prices). The kurtosis in the distribution of elec-

tricity spot prices comes from the prices spikes. To capture high kurtosis two possible

modi�cation can be done: we can introduce a stochastic volatility or add a jump com-

ponent into the model. Both of them bring a second source of randomness into the

model.

The �rst jump-di¤usion model was introduced by Merton in 1976 (see [26]). He

proposed the following model:

dS(t)

S(t)
= �dt+ �dW (t) + J(t)dq(t));
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where q(t) is a Poisson process with intensity � which counts for number of jumps, J(t)

is real random variable (usually normally distributed), which presents distribution of

jump size. Probability of jump over time interval dt is equal to P(dq(t) = 1) = �dt,

corresponding probability of no jump during dt is P (dq(t) = 0) = 1� �dt. Probability
of more than one jump over time interval dt is zero. The Poisson process q(t) and

Wiener process W (t) are independent of each other (dq(t)dW (t) = 0).

Although this jump di¤usion model solves the problem of fat tails in the probability

distribution of returns, spikes of spot prices are not really included in the model. Spike

is just upward jump which dissipate over time at the price converges back to its mean.

Jump di¤usion models use jumps to create spikes and high mean reversion rates to

force the price to return to lower level price. Empirically, when the spot price does

not jump we can also see mean-reversion, but not of the same rate. Thus we need to

�lter out jumps before estimating mean-reversion rate, otherwise the mean-reversion

rate will be to high to adequately characterize the times without jump. One way to

solve the problem is to consider di¤erent regimes with di¤erent parameters to capture

the di¤erent behavior of the prices in each regime.

4.6 Stochastic volatility models

We can incorporate an additional source of randomness without using a jump�di¤usion

model by making volatility stochastic. The general form for these models can be

expressed as

dS(t)

S(t)
= �dt+ �(t)dW 1(t);

d�(t) = a(t; S(t); �(t))dt+ b(t; S(t); �(t))dW 2(t) and

dW 1(t)dW 2(t) = �dt:

Considering di¤erent functions a(t; S(t); �(t)) and b(t; S(t); �(t)) we obtain models

with di¤erent volatility structures. We show a few examples of the stochastic volatility

models below.

Hull and White model

Hull and White [23] specify the square of volatility following the exponential Brownian

motion.

dS(t)

S(t)
= �dt+ �(t)dW 1(t);

d�2(t) = ��2(t)dt+ 
�2(t)dW 2(t) with

dW 1(t)dW 2(t) = �dt:
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Heston model

Heston [20] considers mean-reverting square root volatility process:

dS(t)

S(t)
= �dt+ �(t)dW 1(t);

d�2(t) = �(� � �2(t))dt+ 
�(t)dW 2(t) with

dW 1(t)dW 2(t) = �dt:

Stein and Stein model

The volatility in Stein and Stein [31] follows an Ornstein-Uhlenbeck process

dS(t)

S(t)
= �dt+ �(t)dW 1(t);

d�(t) = �(� � �(t))dt+ 
�(t)dW 2(t) with

dW 1(t)dW 2(t) = 0:

4.7 A¢ ne jump di¤usion models

Both jump di¤usion models and stochastic volatility models belong the broader class

of A¢ ne Jump Di¤usions (AJD) models, proposed by Du¢ e, Pan and Singleton [11].

They consider a multidimensional state vectorX(t) (say a n-dimensional real-valued

vector) as a¢ ne jump di¤usion:

dX(t) = �(X(t); t) + �(X(t); t)dW (t) + dQ(t)

where W (t) is n-dimensional standard Brownian motion and Q is a jump process with

jumps with distribution � on Rn with intensity vector �(X).
All of the functions (the drift vector �(X; t), the covariance matrix �(X; t)) =

�(X; t)(�(X; t))T , the intensities �(X; t) and the interest rates R(Xt)) have a¢ ne (lin-

ear) dependence on the state vector X:

�(X(t); t) = K0(t) +K1(t)X(t); for K(t) = (K0(t); K1(t)) 2 Rn�Rn�n;
�(X(t); t)ij = (H0(t))ij + (H1(t))ij X(t); for H(t) = (H0(t); H1(t)) 2 Rn�n�Rn�n�n;
�(X(t); t) = l0(t) + l1(t)X(t); for l(t) = (l0(t); l1(t)) 2 R� Rn;
R(X(t); t) = �0(t) + �1(t)X(t); for �(t) = (�0(t); �1(t)) 2 R� Rn:

In this context, stochastic volatility model can be described by two-dimensional

state vector X(t) = (S(t); �(S; t)) with � = 0 and appropriate �; � and �. Jump
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di¤usion model of Merton can be described by one dimensional state vectorX(t) = S(t)

and non-zero constants �; �; � and �.

This model is very general and allows to capture dynamics of very di¤erent path-

types. However, as pointed for example by Anderson [1], one of the disadvantages of

these models is di¢ culties for the risk-neutral pricing of the derivatives such as futures

and options. Risk-neutral pricing is based on existence of a hedging strategy which can

replicate the dynamics of the derivative under consideration and thus the risk-neutral

price of this derivative should be the same as the cost of the hedge strategy. The

addition of the jumps leads to the problems in �nding hedging strategies, since they

make markets incomplete. One has to deal with the problem in one of two ways. The

�rst way is to assume that jumps are incorporated with market factors. In this case,

jumps are considered to be a non-systematic risk and can be ignored (the asset holder

is not rewarded for bearing this risk). In this way only mean-reversion, seasonality and

volatility are taken into account during hedging.

Another way to deal with the pricing of derivatives problem is to suggest that there

exist enough traded instruments to hedge the jumps. As we have independent jumps

of random sizes this suggests that there are in�nite number of instruments for hedging

these jumps.

4.8 Regime switching models

Alternative to AJD way to incorporate spikes into model is the so-called regime-

switching model. In these models few price regimes are usually considered and spikes

and mean-reversion of the spot prices are considered to belong to di¤erent regimes.

Huisman and Mahieu [21] presented a regime-switching model where the spot price

is a sum of a deterministic component f and a stochastic component x:

S(t) = f(t) + x(t); where t = 1; : : : ; T:

The stochastic component follows three regimes: a normal regime (regime 0), when

prices follow �normal� electricity price dynamics, a jump regime (regime +1) that

models the process when price of electricity exhibits spikes, and a reverting regime

(regime �1) that describes how the electricity price reverts back to the normal regime:

dx(t) = ��0x(t� 1) + �0"(t); in regime 0

dx(t) = �1 + �1"(t); in regime + 1

dx(t) = ���1x(t� 1) + ��1"(t) in regime � 1

with "(t) � N(0; 1). The mechanism to describe how to move from one regime to
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another is represented by Markov transition matrix �:

� = (�i;j) =

regime 0 regime + 1 regime� 1
regime 0 �00 0 1

regime+ 1 �+10 = 1� �00 0 0

regime � 1 0 1 0

Here �i;j is the probability that the electricity prices switches from regime j to regime

in period t to regime i in period t+1. Note that in this model the spike and reverting

regimes last only for one period (one day if daily data are used) (��1;+1 = �0;�1 = 1

and �+1;0 = �0;0 = �+1;�1 = ��1;�1 = 0).

Other possibilities and regimes are possible. For example Ethier and Mount [13]

consider regime switching model of Hamilton [19] with two regimes:

y(t)� �s(t) = �
�
y(t� 1)� �s(t�1)

�
+ "(t)

with s(t) = 1; 2 describing the regime, �s(t) being mean value in regime s(t) and "(t) �
N(0; �s(t)) with volatility �s(t) also depending on regime s(t). In this case P is a 2� 2
transition matrix of probabilities to jump from regime to regime:

P =

"
p11 1� p22

1� p11 p22

#
=

"
p 1� q
1� p q

#
:

Other authors (see for example [18], [24]) consider di¤erent regimes and processes

to describe dynamics of the price in each regime.

4.9 Other models

4.9.1 Villaplana model with short-term and long-term sources

of risk and jumps

Villaplana [34] extended the Schwartz and Smith model by including the jump with a

non-constant intensity in the short-term factor. A seasonality factor is also included.

Logarithm of the spot prices is expressed as some of two factors:

lnS(t) = f(t) +X(x) + Y (t)

dX(t) = ��1X(t)dt+ �1dW 1(t) + J(t)dq(t)

dY (t) = �2 (� � Y (t)) dt+ �2dW 2(t)

dW 1(t) dW 2(t) = �dt;
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where f(t) is deterministic function, X(t) is a short-term factor and Y (t) is a long-term

factor, which could be either mean-reverting or a generalized Brownian motion.

4.9.2 Lévy process for spot pricing: CGMY model

A more general way to incorporate jumps into the model is to use a Lévy process.

Carr, Geman, Madan and Yor [8] presented CGMY model in which pure jump Lévy

process is proposed for modeling spot price. The stock price modeled by upward and

downward jumps where Lévy density kCGMY (x) represents the probability of occurring

the jumps of size x in a unit time interval:

kCGMY (x) =

(
C e�Gjjxj

jxj1+Y for x < 0

C e�Mjjxj

jxj1+Y for x > 0

where C > 0; G � 0; M � 0 and Y < 2:
Though attractive for electricity spot pricing, as pointed by Geman, this model

cannot capture dependencies in the increments of the electricity prices and stochastic

volatility should be incorporated in the Lévy process.

4.9.3 Hyperbolic distribution of the spot prices

Of course one natural way to �t distribution of spot returns is to consider di¤erent from

(log)-normal distribution for the price process. For example in Eberlein and Stahl [12]

hyperbolic distribution was use in order to capture fat tails we observed in the data

analysis.



Chapter 5

Factor model for futures pricing

5.1 Motivation

In this section we argue in favor of the Schwartz and Smith model for electricity futures

pricing and give motivation for the modi�cation of this model. One of the main re-

quirements for a good model is to make sure that the model can capture all important

characteristics of the process under consideration and does not include unnecessary

complications which could make the model unusable in practice.

In order to choose an appropriate model we need to decide which process we actually

would like to model or which products we want to price. We �nd it di¢ cult to �nd

one model that can capture appropriately both spot and futures prices, due to the big

di¤erence in the process characteristics, although it is de�nitely the ultimate goal of

all model-builders to try to describe the whole market with just one model. Our choice

was to derive an appropriate model for the pricing of futures and options on electricity

and not for spot pricing. That is why we consider the jump di¤usion components,

which are added for example in Villaplana model, to be unnecessarily complicated.

Spikes observed on the spot market are not visible on the futures market and can be

viewed as high volatility of the market without imposing any extra factor. On the

other hand we believe that futures prices in the near future (say a month) and in the

long term di¤er signi�cantly. That is why we turned our attention to the two-factor

Schwartz and Smith model.

Another important characteristic of the model we would like to have is its ability

to derive is a closed or semi-closed form solution for futures and European-style deriv-

atives. To express future prices properly we need to derive the theoretical price of a

futures contract and take into account the fact that futures have delivery over a period

[T0; T ] rather than at a speci�c point in time T . This is a drawback of the Schwartz

and Smith model. To our knowledge existing models for the electricity futures do not

distinguish futures price before starting of delivery period and during delivery period,

61
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considering maturity of the futures to be a single point in time, though prices of the

futures during delivery period uses average of the spot price and not the spot price in
speci�c time point as underlying. We consider the modi�cation to Schwartz and Smith

model which takes into account changes in futures price during delivery period to be

our main contribution to existing model.

In this chapter we use all the notations and basic arguments of the Schwartz and

Smith model two-factor model from [29].

5.2 Model setup

Before being able to price futures and options on electricity we need to present here

the model for spot prices.

We consider a complete probability space (
;F ;P) with a �ltration F = (F t)t�0.

As usual, Ft represents an information available at time t and the �ltration F repre-
sents information �ow evolving with time. Thus we consider �ltered probability space

(
;F ;P;F) which satis�es �usual conditions�(See for example [10]). From now on for

any stochastic process X(t)t=1t=0 we use notation Et(X(T )) for expectation conditional
on �ltration Ft, exactly E(X(T )jFt).
Let us denote by S(t) the spot price of electricity at time t. As in ([29]) we decom-

pose spot prices into two stochastic factors as

ln(S(t)) = �(t) + �(t) + h(t); (5.1)

where �(t) will be referred to as the short-term deviation in price, �(t) is the equilibrium

price level and h(t) is a deterministic seasonality function.

The short-term deviations �(t) are assumed to revert toward zero following an

Ornstein-Uhlenbeck process:

d�(t) = ���(t) dt+ �� dW�(t); (5.2)

and the equilibrium level �(t) is assumed to follow a Brownian motion process:

d�(t) = �� dt+ �� dW�(t):

Here W� and W� are correlated standard Brownian motion processes under the real-

world measure P with dW�(t)dW�(t) = ���dt. Spot price process is adapted to the

�ltration (F t)t�0 process.

We can write the analytical forms for the distributions of the state variables �(t)

and �(t) as follows. Given �(t) and �(t) and using [29] we �nd that �(T ) and �(T )

are jointly normally distributed with conditional mean vector Et [(�(T ); �(T ))] and
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covariance matrix Covt [(�(T ); �(T ))]:

Et [(�(T ); �(T ))] =
�
e��(T�t)�(t); �(t) + ��(T � t)

�
; and (5.3)

Covt [(�(T ); �(T ))] =

26664
�
1� e�2�(T�t)

� �2�
2�

�
1� e��(T�t)

� �������
�

�
1� e��(T�t)

� �������
�

�2�(T � t)

37775 :(5.4)

Given �(t) and �(t); the logarithm of the future spot price at time T is normally

distributed with conditional mean and variance as

Et [lnS(T )] = Et [�(t) + �(T )] = e��(T�t)�(t) + �(t) + ��(T � t) + h(T )
(5.5)

Vart [lnS(T )] =
�
1� e�2�(T�t)

� �2�
2�
+ �2�(T � t) + 2

�
1� e��(T�t)

� �������
�

:

(5.6)

5.3 Geometric average versus arithmetic average

The futures contracts on electricity are based on the arithmetic averages of the spot

prices over a delivery period. Let T0 be the day before the �rst day of the delivery

period for monthly futures and T be the last day of delivery. For example, T � T0
could be a month, a quarter or a year. Now for i = 1; : : : ; n consider n averaging

points ti = T0 + i ��t with t0 = T0; tn = T and �t = (T � T0)=n.

In the market prices of electricity futures are based on arithmetic average 1
n

nP
i=1

S(ti).

Unfortunately the sum of lognormal random variables is not lognormal and we cannot

derive a closed-form solution for the futures based on the arithmetic average. However,

it is known, that sum of lognormal distributed variables is approximately lognormal.

We can use the geometric average as an approximation for an arithmetic average.

Geometric average of n positive values is always smaller than or equal to the arith-

metic average of these n values. The di¤erence between these two values decreases

with number of averaging points.

We will use the geometric average of n prices to estimate the arithmetic average

over the time period of n days. So t1 is a �rst day of delivery and tn = T is the last

day of delivery. First suppose that t < t1 and let Gn to be the geometric average of n
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prices at times t1; t2; : : : ; tn1.

Gn =

"
nY
i=1

S(ti)

#1=n
: (5.7)

Note that every S(ti)=S(ti�1) is (conditionally) lognormally distributed and thus

Gn is also (conditionally) lognormally distributed.

5.4 Spot process under the risk-neutral measure

In order to use the risk-neutral valuation of future price we need to express the model

under the risk-neutral measure Q. We assume that the risk-neutral stochastic process
for short-run deviations (�(t)) and equilibrium levels (�(t)) are of the form

d�(t) = (���(t)� ��) dt+ �� dW �
�(t) and (5.8)

d�(t) =
�
�� � ��

�
dt+ ��dW

�
� (t); (5.9)

where W �
� and W

�
� are correlated standard Brownian motion processes under the risk-

neutral measure Q with dW �
�(t)dW

�
� (t) = ���dt.

Now the risk-neutral process for the short-term deviations (�(t)) is an Ornstein-

Uhlenbeck process reverting to ���=� (instead of 0 in the real-world process) and the
risk-neutral process for equilibrium prices (�(t)) is again a geometric Brownian motion,

but now it has a drift ��� = �� � ��.
We can also express �(T ) and �(T ) in integral form

�(T ) = ���
�
+ e��(T�t)

�
�(t) +

��
�

�
+ ��

TZ
t

e��(T�u)dW �
�(u); (5.10)

�(T ) = �(t) + ��� (T � t) + ��
�
W �
� (T )�W �

� (t)
�
: (5.11)

Given �(t) and �(t) and following derivations similar to those for equations (5.3) and

(5.4) we �nd that �(T ) and �(T ) are jointly normally distributed under the risk-neutral

measure Q with conditional mean vector and covariance

E�t [(�(T ); �(T ))] =
�
���
�
+ e��(T�t)

�
�(t) +

��
�

�
; �(t) + ���(T � t)

�
;(5.12)

Cov�t [(�(T ); �(T ))] = Covt [(�(T ); �(T ))] : (5.13)

Here (and below) we use asterisks to denote expectations, covariances and variances

under the risk-neutral measure Q. Under the risk-neutral process the logarithm of

1Here ln(Gn) = 1
n

Pn
i=1 ln(S(ti)) � ln( 1n

Pn
i=1 S(ti)) and thus Gn � 1

n

Pn
i=1 S(ti).
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future spot price lnS(T ) conditioned on time t is normally distributed with

E�t [lnS(T )] = ���
�
+ e��(T�t)

�
�(t) +

��
�

�
+ �(t) + ���(T � t) + h(T ) (5.14)

and

Var�t [lnS(T )] = Vart [lnS(T )] : (5.15)

Comparing equations (4) and (9), we see that the risk premiums reduce the loga-

rithm of the expected spot prices by
�
��
�
1� e��(T�t)

�
=�+ ��(T � t)

�
and this pre-

mium depends on the time to maturity, but not on the state variables. The premium

��
�
1� e��(T�t)

�
=� comes from mean-reverting process �(t) and the premium ��(T�t)

comes from geometric Brownian motion �(t):

5.5 Calculation of future prices

Now, to value the future contract on the average of the spot prices we need to �nd dis-

tributions of Gn under risk-neutral measure Q. De�ne An = lnGn; An is conditionally

normally distributed.

Lets F (t; T0; T ) be the futures price of electricity at time t with delivery period

(T0; T ]. First we will consider the case where the future prices is calculated before the

delivery period has started, thus we consider the case where t < T0:

We can derive that the conditional mean and the conditional variance of An before

the delivery period are given below. Derivations �gure in the Appendix.

E�t [An] =
1

n
[h(t1) + h(t2) + � � �+ h(tn)]�

��
�
+

�
�(t) +

��
�

�
e��(T�t)'(T0; T; n)

+�(t) +

�
T � t� (n� 1)

2
�t

�
��� =: mA(t; T0; T; n); (5.16)

and
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Var�t [An] =
�2�
2�

�
e�2�(T�T0) � e�2�(T�t)

�
('(T0; T; n))

2

+
1 + e���t

1� e���t

�
1

n
� 2e

��(T�T0)

n
'(T0; T; n) +

1

n2
1� e�2�n�t
e2��t � 1

�

+
2�������

�

"�
e��(T�T0)e�(T�T0)=n � e��(T�t)

�
'(T0; T; n) +

1

n2

n�1X
i=1

i
�
1� e�i��t

�#

+
�2�
n2
�
n2(t1 � t) + ((n� 1)2 + (n� 2)2 + � � �+ 1)�t

�
=: �2A(t; T0; T; n); (5.17)

where

'(T0; T; n) =

�
e�(T�T0) � 1
n (e��t � 1)

�
:

Now, Gn is lognormally distributed, thus

E�t [Gn] = exp

�
E�t [lnGn] +

1

2
Var�t [lnGn]

�
= exp

�
E�t [An] +

1

2
Var�t [An]

�
(5.18)

= exp

�
mA(t; T0; T; n) +

1

2
�2A(t; T0; T; n)

�
:

Under the risk-neutral measure

F (t; T0; T ) = E�t [Gn] = exp
�
mA(t; T0; T; n) +

1

2
�2A(t; T0; T; n)

�
= exp

�
�(t)e��(T�t)'(T0; T; n) + �(t) +B(t; T0; T; n)

�
; (5.19)

where mA(t; T0; T; n) and �2A(t; T0; T; n) are de�ned in (5.16) and (5.17) and

B(t; T0; T; n) =
��
�

�
e��(T�t)'(T0; T; n)� 1

�
+

�
T � t� (n� 1)

2
�t

�
���

+
1

2
�2A(t; T0; T; n) +

1

n

nX
i=1

h(ti): (5.20)

Now consider the case where we would like to price a futures contract during delivery
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period, i.e., T0 < t � T: Let i� to be such that ti��1 < t � ti�. Then

E�t [An] =
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(ti��1) + h(ti�) + � � �+ h(tn))

+

�
�(t) +

��
�

�
e��(T�t)'�(T0; T; n)

+
n� i� + 1

n

�
�(t)� ��

�
+

�
T � t� n� i

�

2
�t

�
���

�
= : �mA(t; T0; T; n); (5.21)

and

Var�t [An] =
�2�
2�

��
e�2�(n�i

�+1)�t � e�2�(T�t)
�
'�(T0; T; n)

+
1 + e���t

1� e���t

�
n� i� + 1

n2
� 2e

��(n�i�+1)�t

n
'�(T0; T; n)

��

+
2�������

�

"
n� i� + 1

n
'�(T0; T; n)

�
e��(n�i

�)�t � e��(T�t)
�
+
1

n2

n�i�X
i=1

i(1� e��i�t)
#

+
�2�
n2
�
(n� i� + 1)2(ti� � t) + ((n� i�)2 + (n� i� � 1)2 + � � �+ 1)�t

�
= : ��2A(t; T0; T; n); (5.22)

where

'�(T0; T; n) =

�
e�(n�i

��1)�t � 1
n (e��t � 1)

�
:

And the price of the futures contract in this case is thus

F (t; T0; T ) = E�t [Gn] = exp
�
�mA(t; T0; T; n) +

1

2
��2A(t; T0; T; n)

�
;

= exp

�
�(t)e��(T�t)'�(T0; T; n) +

n� i� + 1
n

�(t) +B�(T0; T; n)

�
;(5.23)

where �mA(t; T0; T; n) and ��2A(t; T0; T; n) are as in (5.21) and (5.22) and
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B�(t; T0; T; n) =
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(ti��1) + h(ti�) + � � �+ h(tn))

+
��
�

�
e��(T�t)'�(T0; T; n)�

n� i� + 1
n

�

+
n� i� + 1

n

�
T � t� (n� 1)

2
�t

�
��� +

1

2
��2A(t; T0; T; n): (5.24)

5.6 Risk premium

The risk premium (or term premium) is the amount which the buyer or seller of the

contract (future) is ready to pay in order to avoid risk of price �uctuations. Thus

usually the risk premium is de�ned by

�(t; T ) = F (t; T )� Et(S(T )) = E�t (S(T ))� Et(S(T )):

The second equality is valid because the price of the future is calculated as the risk-

neutral expectation of the future spot price. We would like to note here that in spite of

de�nition, the risk premium could be negative in case when the future price is higher

than expected spot price. A buyer would be willing to pay more to lock in the prices,

but a seller might also be willing to receive less that the expected price at expiry

to secure a �xed selling price today. The sign of the term premium depends on the

intersection between supply and demand. Because we do not have futures with the

delivery point, but futures with delivery period, we de�ne risk premium in our model

as

�(t; T ) = F (t; T )� Et(Gn); (5.25)

where

Gn =

"
nY
i=1

S(ti)

#1=n
;

and which is used as an underlying for the future contracts.

Now for convenience of calculations, we de�ne the term premium coe¢ cient R as

R = log

�
F (t; T0; T )

Et(Gt)

�
= log

�
E�t [Gn]
Et [Gn]

�
:

To calculate this we need to �nd distribution of An under the real-world measure

P. Using the derivation from the Appendix B we get:
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Et [An] = e��(T�t)'(T0; T; n)�(t) + �(t) +

�
T � t� n� 1

2
�t

�
��

+
1

n
[h(t1) + h(t2) + � � �+ h(tn)] (5.26)

Vart(An) = Var�t (An) = �2(t; T0; T; n): (5.27)

Now Et [Gn] can be calculated as

Et [Gn] = exp
�
Et [An] +

1

2
�2A(t; T0; T; n)

�
; (5.28)

and thus the term premium coe¢ cient can be expressed as

R = log

�
E�t [Gn]
Et [Gn]

�
=

= ���
�

�
1� e��(T�t)'(T0; T; n)

�
� ��

�
T � t� (n� 1)

2
�t

�
: (5.29)

For the case where T0 < t � T we get

Et [An] =
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(ti��1) + h(ti�) + � � �+ h(tn))

+
1

n
e��(ti��t)

1� e�(n�i�+1)��t
1� e���t �(t)

+
n� i� + 1

n

�
�(t) + ��

�
(T0 � t) +

(i� + n)

2

�
�t

�
(5.30)

Vart(An) = Var�t (An) = ��2A(t; T0; T; n); (5.31)

and thus term premium is:

R = log

�
E�t [Gn]
Et [Gn]

�
=

= ���
�

�
n� i� + 1

n
� 1

n
e��(ti��t)

1� e�(n�i�+1)��t
1� e���t

�

���
n� i� + 1

n

�
(T0 � t) +

(i� + n)

2
�t

�
: (5.32)
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Note that if n = 1 there is no averaging over period (T0; T ] and thus for 8t 2 [0; T ]

R(T � t) = ���
�
1� e��(T�t)

�

�
� �� (T � t) ;

which the risk premium coe¢ cient for the original Schwartz and Smith model [29].

As we can see risk premium consist of two time-factors. The �rst �short-term�factor

���
�
1� e��(T�t)

�
=k in�uences the risk premium curvature (few month to delivery)

and converge to the limit value ���=� as time to maturity T�t tends to in�nity. Value
���=� can be both positive and negative, depending on the sign of the parameter ��.
The second factor ��� (T � t) is decreasing linearly, because, as we will see in the
Chapter 7, the long-term parameter �� is positive. This factor in�uences the risk

premium more in the long run. We will see how di¤erent parameters change the shape

of the term premium function in Chapter 7.

5.7 The option formula

Now using risk-neutral valuation we can derive the analytic formulae for pricing the

European options on futures contracts. The value of a European option on a future

is given by calculating the expected future value of the option using the risk-neutral

measure and by discounting by risk-free rate r. By (5.19)

ln(F (t; T0; T )) = �(t)e
��(T�t)'(T0; T; n) + �(t) +B(t; T0; T; n);

thus ln(F (t; T0; T )) is normally distributed with mean

mF (t; T ) = E�t
�
�(t)e��(T�t)'(T0; T; n) + �(t) +B(t; T0; T; n)

�
= E�t

�
�(t)e��(T�t)'(T0; T; n) + �(t)

�
+B(t; T0; T; n)

= �0e
��T'(T0; T; n) + �0 + �

�
�t+B(t; T0; T; n)

and volatility

�2F (t; T ) = Var�t [ln(F (t; T0; T )] = Var�t
�
�(t)e��(T�t)'(T0; T; n) + �(t) +B(t; T0; T; n)

�
= e�2�(T�t)'2(T0; T; n)Var�t (�(t)) + Var�t (�(t))

+2e�2�(T�t)'2(T0; T; n)Covt(�(t); �(t))

= e�2�(T�t)'2(T0; T; n)
�
1� e�2�t

� �2�
2�
+ �2�t

+e��(T�t)'(T0; T; n)
�
1� e��t)

� 2�������
�

: (5.33)
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It is clear that E�t [F (Te; T0; T )] = F (t; T0; T ). Knowing the fact that future futures
prices are lognormally distributed we can use the Black-Scholes formula for calculating

options using e�r(Te�t)F (t; T0; T ) instead of usual stock price at time t.

Consider an European call option at time t on a futures contract with delivery

between T0 and T (and n averaging points) with strike price K and with time Te as

the option�s expiry time.

The theoretical price of such option C(t; Te; F (t; T0; T )) is equal to the discounted

(by risk-free rate) expected value of payo¤ function max(F (Te; T0; T )�K; 0):

C(t; Te; F (t; T0; T )) = e�r(Te�t)E�t [max(F (Te; T0; T )�K; 0)]

= e�r(Te�t)(E�t [F (Te; T0; T )]N(d1)�KN(d2))

= e�r(Te�t)(F (t; T0; T )N(d1)�KN(d2)); (5.34)

where

d1 =
ln(F (t; T0; T )=K)

�F (Te; T )
+
1

2
�F (Te; T )

d2 =
ln(F (t; T0; T )=K)

�F (Te; T )
� 1
2
�F (Te; T )

and N denotes cumulative probability function for standard normal distribution.

We used here the Black-Scholes formula for valuing European call option with

e�r(Te�t)F (t; T0; T ) instead of usual stock price at present time (usually S(t)) and an-

nualized volatility �F (T0; T )=
p
t instead of usual annualized volatility � for stocks at

time T0 of option expiry.

Analogously, the price of corresponding put option P (t; Te; F (t; T0; T )) is equal to

P (t; Te; F (t; T0; T )) = e�rtE�t [max(K � F (Te; T0; T ); 0)]

= e�r(Te�t)(�F (t; T0; T )N(�d1) +KN(�d2)): (5.35)

Using the formulae for Call and Put options presented above we can calculate the

prices of all options available in the market. Using formula 5.33 we can also calculate

the implied volatility for the options. We will present the graphs of the options prices,

calculated by formulae 5.34 and 5.35 using estimated parameters, and market options

prices in the Chapter 7.



Chapter 6

Implementation

6.1 Estimation of the model parameters

In the two-factor model described above, short-term and long-term state variables �(t)

and �(t) are not directly observed in the market. We observe only spot, futures and

option prices. Options on electricity futures were introduced on the EEX at the end

of 2004. However, since the option market still lacks liquidity, we prefer not to use

this data. Thus we have the choice to estimate model parameters from the market

spot or the futures market prices or both. Estimation of the parameters from the spot

prices will obviously lead to a high value of the mean-reversion parameter because of

the existence of spikes in the spot price, which are not included in our model. On the

other hand, we have short-term and long-term futures which we can use for estimation.

Spot prices can be used as the basis for the calculation of the futures prices during the

delivery period because the spot prices for the days during the delivery period that

have already passed are included in the futures price.

6.2 The Kalman �lter

The short-term/long-term model of Schwartz and Smith described above allows us

to use standard Kalman �ltering and maximum likelihood techniques to �t the model

future prices to the observed data and obtain the estimates of the model parameters and

space variables: the short-term deviation in price �(t) and the equilibrium price level

�(t). The Kalman �lter is a recursive procedure for computing estimates of unobserved

state variables (�(t) and �(t)) based on observations (lnF (t; T0; T )) that depend on

theses state variables.

To apply the Kalman �lter for estimation purposes we need �rst to put our model

in the state space form.

72
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6.2.1 State space form representation of the model

We discretized Equations (5.3)-(5.4) describing the behavior of short-term factor (�(t))

and long term factor (or equilibrium level) (�(t)). Thus we consider linear time in-

variant discrete-time stochastic dynamic system. For each time point tk = k�t for

k = 1; : : : ; NT , where �t is a time step, we de�ne the two-dimensional state vector xk,

which represents unobserved values �(tk) and �(tk) and observations yk of the logs of

the prices of available future prices at time tk. From Equations (5.3)-(5.4) the evolution

of the state variables is described by the transition equation:

xk = c+Txk�1 + !k; k = 1; :::; nT ; (6.1)

where

xk :=

 
�(tk)

�(tk)

!
; a 2� 1 vector of state variables;

c :=

 
0

���t

!
; a 2� 1 vector;

T :=

 
e���t 0

0 1

!
; a 2� 2 matrix;

!k is a 2�1 vector of serially uncorrelated, normally distributed disturbances with
E (!k) = 0 and Var(!k) =W := Cov[(��t; ��t)], given from equation (5.4) by

Cov
h
(��t; ��t)

0
i
=

0BBB@
�
1� e�2��t

� �2�
2�

�
1� e���t

� ��� ����
2�

�
1� e���t

� ��� ����
2�

�2��t

1CCCA ;

�t is the length of the time steps;

nT is the number of time periods in the data sets.

The observation (or measurement) equation describes the relationship between the

state variables and observed prices. From Equations (5.19)-(5.23), this is

yk = dk + Fkxk + vk; k = 1; :::; nT ; (6.2)

where

yk :=

0B@ lnF (tk; T01; T1)

: : :

lnF (tk; T0m; Tm)

1CA
is a m � 1 vector of observed (log) futures
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prices with expiries T1; T2; : : : ; Tm and T0i = Ti�n�t, where n is equal to number days
during delivery period (for example n = 30 for the monthly futures);

dk :=

0B@ B(tk; T01; T1; n)

: : :

B(tk; T0m; Tm; n)

1CA is a m � 1 vector, with B(tk; T0i; Ti; n) from

(5.20);

Fk:=

0B@ e��(T1�tk)'(T01; T1; n) 1

: : : : : :

e��(Tm�tk)'(T0m; Tm; n) 1

1CA is a m� 2 matrix; and

vk is a m�1 vector of serially uncorrelated, normally distributed disturbances with

E [vk] = 0; Cov (vk) = V:

These observation errors (vk) can be interpreted as representing errors in reporting

of prices or, alternatively, as errors of the model �t to observed prices.

The speci�cation of the state space system is completed by introducing two further

assumptions:

a) the initial state space vector x0 = (�0; �0)
0 has a mean of x̂0 and a covariance matrix

P0:

E [x0] = x̂0;

Var [x0] = P0;

b) the disturbances !k and vj are uncorrelated with each other in all time periods,
and uncorrelated with the initial state, that is

E
�
!kv

0
j

�
= 0 for all k; j = 1; :::nT ;

and

E (!kx00) = 0; E (vkx00) = 0; for k = 1; :::nT :

The observation and state equation matrices, F
0
k;dk;V;T; c;W; depend on the

unknown parameters of the model. The goal is to �nd estimates for these parameters.

This can be achieved by maximizing the likelihood function with respect to the un-

known parameters. Given the distribution of the initial value of state variables as in

a) and likelihood function of the observations as a function of true values we run the

Kalman �lter recursively.
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Let denote by Yk = fyk;yk�1; : : : ;y1;y0g the information set at time tk. In each
subsequent period, we use the observation yk and the previous period�s k � 1 mean
vector and covariance matrix to calculate the mean vector and covariance matrix for

current state variables. Let denote by x̂k j l the optimal estimator of xk based on

information Yl. We call x̂k j k�1 = E [xk j Yk�1] the a priori state estimator and x̂k j k =
E [xk j Yk] the a posteriori state estimator. Let Pk�1 j k�1 denote the m�m covariance

matrix of the a posteriori estimation error, i.e.,

Pk�1 j k�1 := E
h�
xk�1 � x̂k�1 j k�1

� �
xt�1 � x̂k�1 j k�1

�0i
:

Given x̂k�1 j k�1 and c, the optimal a priori estimator of xk is given by

x̂k j k�1 = c+T x̂k�1 j k�1 = E [xk j Yk�1] ; (6.3)

while the covariance matrix Pk j k�1of a priori estimation error is

Pk j k�1 = TPk�1 j k�1T
0
+W; k = 1; : : : ; nT : (6.4)

These two equations are known as the prediction equation. x̂k j k�1 and Pk j k�1 are the

mean and covariance of xk based on information know at time tk�1.

Once the new observation yk become available, the estimator of xt can be updated.

The updating equations are

E [xk j Yk] := x̂k j k = x̂k j k�1 +Ak~yk; (6.5)

and

Pk j k = (I�AkQk)Pk j k�1; (6.6)

where ~yk := yk� Fkx̂k j k�1 � dk and Qk := FkPk j k�1F
0
k + V are innovation resid-

uals and innovation (or residual) covariance correspondingly. The matrix Ak :=

Pk j k�1F
0
kQ

�1
k is called the optimal Kalman gain. By recursion, we can derive the

estimates x̂k j k of state variables for each k = 1; : : : ; nT .

6.3 Maximum likelihood estimation

The Kalman �ltering procedure infers the realizations of the (unobserved) state vari-

ables over time given particular parameters of the process. We denote by the set of all

unknown parameters of the model. The Kalman �lter is also critical to the maximum

likelihood estimation of the unknown parameters of the model. Maximum likelihood

estimation is one of the common methods of estimation the parameters. Maximum

likelihood estimator of parameters is a minimum variance estimator in the limit as the
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sample size increases. See [2] for more details on the maximum likelihood estimator.

The joint probability density function of information set YnT = (y0; y1;y2; :::ynT )
sampled at k = 1; 2; : : : ; nT and calculated with parameters set  , the likelihood

function, is given by

L(ynT ; ) =

nTY
k=1

p (yk; jYk�1) ; (6.7)

where p (yk; jYk�1) denotes the distribution of yk conditional on the information
set Yk�1 available at time k � 1 and calculated using parameters set  . As soon

as disturbances !k and vk and the initial state vector x0 have multivariate normal

distributions, the distribution of yk conditional on Yk�1 is itself normal. Furthermore,
the mean and covariance matrix of this conditional distribution are given directly by

the Kalman �lter.

Remember, that state vector xk conditional on Yk�1 is normally distributed with a
mean x̂k j k�1 and a covariance matrix of Pk j k�1. If we write measurement equation as

yk = Fkx̂k j k�1 + Fk
�
xk � x̂k j k�1

�
+ dk + vk

we can see that the conditional distribution of yk is normal with mean

E (yk; jYk�1) = Fkx̂k j k�1 + dk (6.8)

and the covariance matrix, Qk, as was shown before,

Qk := FkPk j k�1F
0

k +V: (6.9)

For the Gaussian model, therefore, the log-likelihood function is obtained by

lnL(ynT ; ) =

nTX
k=1

ln (p (yk; jYk�1))

= �mnT
2

ln 2� � 1
2

nTX
k=1

ln jdetQkj �
1

2

nTX
k=1

�
0

kQ
�1
t �k; (6.10)

where

�k = yk � E (ykjYt�1) ; k = 1; : : : ; nT :

Vector �k can be interpreted as a vector of prediction errors, because it is a

minimum mean-square estimator for yk. Maximum likelihood function must be maxi-

mized with respect to the unknown parameters  . There are seven model parameters

(�; ��; ��; ��; ���; ��; ��) plus the terms in the covariance matrix for the measurement

errors (V). There are m(m + 1)=2 variables in the covariance matrix, where m is the
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number of futures contracts we use for calculations. To simplify, we assume that the

matrix V is diagonal with diagonal elements (s21; : : : ; s
2
m). Thus we have to estimate

m+ 7 parameters by maximizing likelihood function from (6.10) with respect to these

parameters .

It is possible to ensure that the model �ts better particular contracts, to do that we

can �x corresponding parameters in the matrix V. For example, if we want to be sure

that the model perfectly replicates short-term futures, we could choose the observation

errors covariance matrix V with zero variances for short-term futures.

We use the simulated annealing algorithm in combination with sequential quadratic

programming algorithm (SQP) for our optimization procedure. We describe these

methods in the next two sections. For more details see, for example, [32].

6.4 Optimization procedure

6.4.1 Simulated Annealing

In our likelihood maximization procedure we use simulated annealing algorithm to

�nd the global maximum of the likelihood function. This technique is suitable for

the optimization problems of large scale, especially for the cases where the global

extremum is hidden between many local extrema. The simulated annealing method

originally comes from thermodynamics and statistical mechanics. The term annealing

comes from analogies to the cooling of a liquid or metal. At high temperature molecules

are very mobile, but as the temperature decrease, this thermal mobility is lost, atoms

may line up and molecules may crystallize. This crystal is the minimum energy state.

To achieve this, the liquid or metal should be cooled su¢ ciently slow, otherwise the

substance ends up in amorphous state, having higher energy. The main principle of

the annealing is cooling slowly, allowing atoms to �nd minimum energy state.

The probability of the system to be at the equilibrium energy state x and temper-

ature Ta is expressed via Boltzmann probability distribution:

P(x) =� exp
�
� x

kTa

�
;

where � is a normalizing constant, k is called Boltzmann constant and Ta is the tem-

perature of the system. By this function, even at low temperature there is a small

chance that the system is in a high energy state x. Therefore, there is a corresponding

chance for the system to get out of the local energy minimum in order to �nd better,

global one. Boltzmann constant k is the constant which relates temperature to energy.

In our optimization procedure we minimize the loss function called loss instead of

energy state x.
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6.4.2 Iteration procedure for maximum likelihood maximiza-

tion algorithm

The main steps of estimation procedure of the model parameters are the following:

1. We start with some initial parameter vector 0 and initial temperature Ta = Tinit.

We set temperature iteration itemp to 0. We set the current value of  to be equal

to  0. We run Kalman �lter over the whole period [0; T ] and evaluate the log-

likelihood function lnL(y; ) using matrix Q and vector v obtained from the

Kalman �lter procedure. De�ne x = � lnL(y; ). Now we get a new random

estimate of the parameters  new. More precisely we add standard normal random

perturbation � (with mean 0 and standard derivation 1) to the current value

of the parameters  , thus  new =  +� .

2. We repeat the following iteration procedure.

(a) For the new  new we run the Kalman �lter over the whole period [0; T ] and

evaluate log-likelihood function lnL(y; new) using matrix Q and vector v

calculated during Kalman �lter procedure. xnew = � lnL(y; new).

(b) We set � to be some small positive number and we set the loss function to

be loss = xnew � x. If loss < � , we accept  new, if loss > � we accept

new  new only if � < � exp((�(loss� �))=kTa), where � is a normalizing
constant, k is the Boltzmann constant.

(c) Now, if  new is accepted we set current  to be  new, otherwise current  

does not change.

3. We repeat the procedure above for a �xed number of iterations, saym, with �xed

temperature Ta. Then we increase temperature iteration itemp by 1 and decrease

the temperature according to the formula: for each temperature iteration itemp we

set Ta = Tinit(1= (1 + itempTinitS)), where S is a scaling constant, which regulates

the speed of cooling down the temperature.

4. The vector  obtained from the last iteration are desired parameter estimates.

We used MATLAB 7.0 package to implement our procedure for estimation of

model parameters. In addition to simulated annealing algorithm described above,

we used the built-in MATLAB Sequential Quadratic Programming (SQP) algo-

rithm. We used this algorithm using di¤erent starting points  0 for parameters

in order to guarantee that the optimal parameters we found indeed represent the

global maximum likelihood and not the local optimum of the likelihood function.
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6.4.3 Sequential Quadratic Programming (SQP) algorithm

Sequential Quadratic Programming is a non-linear algorithm for optimization of non-

linear function with constrains. This method is based on the work of Biggs, Han, and

Powell [28] and the method allows us to closely mimic Newton�s method for constrained

optimization just as is usually done for unconstrained optimization. At each iteration

Hessian matrix of second derivatives of minus log-likelihood function is updated using

quasi-Newton method. This Hessian matrix is then used to generate a quadratic pro-

gramming sub-problem. The solution of the sub-problem is used to determine a search

direction for a line search procedure.

The MATLAB SQP implementation consists of three main stages:

� Updating of the Hessian matrix of the Lagrangian function.

At each major iteration a positive de�nite quasi-Newton approximation of the

Hessian of the Lagrangian function, H, is calculated using the Broyden, Fletcher,

Goldfarb, and Shanno (BFGS) method (see [5], [15], [17] and [30]).

� Quadratic programming problem solution.

At each new point we suggest, that our minus log-likelihood function can be

approximated by quadratic function. We use approximation of the Hessian matrix

H calculated before to minimize the following quadratic function

min
d
dtHd+ cd;

in order to �nd the search direction d.

� Line search

The solution to the QP sub-problem produces a vector, which is used to form a

new iterate

 new =  old + �d;

where � is determined in order to produce a su¢ cient decrease in a merit function

which uses an approximation of the gradient of the log-likelihood function. The

merit function and penalty parameters used by Han and Powell can be found in

[28].

6.4.4 Standard errors of parameters

The use of quasi-Newton method (in our case BFGS method) allows us to directly

observe approximated standard errors of the covariance parameter estimates. These

are the square roots of the diagonal elements of the observed Fisher information matrix,
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which equals H�1, where H is the Hessian matrix. The H matrix consists of the

second derivatives of the objective function with respect to the parameters. In our

case objective function is � lnL(y; ). The standard errors of the parameters are
calculated as

SE( ) =
p
diag (H�1)

where H is Hessian matrix derived from the BFGS algorithm.

The standard errors of parameters indirectly tell us how well the obtained para-

meters �t the data. If the standard error is small, it means that a small change in

the parameter would produce the values that �t the data less well. Therefore, we say

that we know the value of that parameter accurately. If the standard error is large, a

relatively large variation of that parameter would not spoil the �t much; therefore, we

do not really know the parameter�s value well.

6.5 Seasonality

Before maximizing the likelihood function, we need to deseasonalize data. In this

section we would like to describe di¤erent possibilities for modeling seasonality. There

are many di¤erent ways to account for the seasonal e¤ect in the electricity prices.

We consider two ways to incorporate seasonality into the model: adding seasonality

function in the spot price and adding seasonality function in the futures price.

6.5.1 Seasonality in the spot prices

We can estimate the deterministic seasonality function exp(h(t)) ; where h(t) is the

seasonal function used in the two-factor model. We estimated this seasonal function

(with n seasons) by �tting the monthly averages of spot data with truncated Fourier

series of order m = n� 1:

F (t) = a0 +
mX
k=1

�
ak cos

�
2�kt

m

�
+ bk sin

�
2�kt

m

��
:

For example we derived the seasonality function for EEX Base spot prices based on

a Fourier series of order �ve and present this function in Figure 6.1.

On this graph the red dots denote the monthly averages of the EEX Base spot

prices over three years. As we can see using just few di¤erent frequencies for Fourier

series we can �t monthly average well. Nevertheless, for us it is not clear whether the

Base spot prices exhibit seasonality and thus we prefer to remove seasonality based on

futures data, which is easily observable if we plot the averaged prices, where we average

the spot prices with speci�c delivery month (see Figure 6.2).
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Figure 6.1: Seasonal function for EEX Base spot price (estimated from truncated
Fourier series of order 6)

Figure 6.2: Averaged over delivery month EEX monthly Base futures prices.
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6.5.2 Seasonality in the futures prices

To remove the seasonality from the futures prices we use the models of Geman and

Borovkova ([4]) and Boogert and Dupont ([6]). We consider the monthly futures price

F (t; T0; T ) and suppose that the price depends on two factors: a(t), called the common

time factor, and b(T ), called the expiry e¤ect, where at �rst the common time factor

a(t) is calculated as an average of all monthly futures traded at time t and the expiry

e¤ect factor b(T ) is calculated as an average of the di¤erences between F (t; T ) and

a(t). Least-square techniques were used to actually �nd optimal values for a(t) for t

and b(T ) for all the delivery months T , which minimizes the sum of squared errors

e(t; T ); where each error is de�ned by

e(t; T ) = F (t; T )� a(t)� b(T );

taking into account the fact that function b(T ) should be seasonal, thus for example

satisfy these conditions

b(0) = 0;
11X
T=0

b(T ) = 0 and

b(T ) = b(T + 12) for all T:

The calculated functions a(t) and b(T ) for both markets were already presented in

the chapter 3 on the Figures 3.35 and 3.36.

Of course there are a lot of di¤erent ways to deseasonalize the time series. We refer

reader to Hylleberg [22] for more possibilities for seasonal adjustments.

6.5.3 Implementation constraints and data used

For model parameters estimation we used data from di¤erent electricity markets: Eu-

ropean Energy Exchange (EEX) for spot prices and prices of futures and option based

on EEX spot price, Amsterdam Energy Exchange for spot prices and Endex for futures

prices on APX spot prices.

1. EEX

For model implementation we use daily observations of prices of electricity spot

and futures contracts on EEX market futures prices from 1 July 2002 till 30

December 2005. More precisely, there are EEX Base spot price observations, daily

observations of 48 month futures contracts maturing in the months from July 2002

till December 2005, daily observations of 20 quarter contracts maturing in the

quarters from April-June 2002 till July-September 2007 and also observations of
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9 year futures maturing in the years 2002-2011. There are 77 futures contracts

in total.

2. APX and Endex

For model implementation we use daily observations of electricity APX Base spot

prices and prices of the futures contracts on Endex market from 1st of January

2002 till 30th of December 2005. There are daily observations of 42 monthly

futures maturing in the months from January 2003 till December 2005, 17 quarter

contracts maturing in the quarters from April-May 2003 till April-June 2007 and

5 year futures maturing in the years 2004-2008. In total there are observations

of the prices of 70 futures contracts.

To check how much parameters of the model will be in�uenced by the introducing

trading in CO2 emission permits, in addition to full data sets, we used separate data

sets for futures prices before year 2005 (thus from July 2002 to December 2005 for EEX

and from January 2003 to December 2005 for APX and Endex) and only for data from

year 2005 for both markets. These data sets will be used in our parameters estimation

and analyzed in the next chapter.



Chapter 7

Results

This chapter presents the results of the parameter estimation (which followed the pro-

cedure described in the previous chapter). Data from two markets were considered:

spot and futures prices from EEX and APX were used for estimation of parameters. For

each market, we estimate parameters on the full sample and reestimate the parameters

for 2005 only by excluding this year from the sample to check the e¤ect of implementing

CO2 emissions reduction. Risk premiums were calculated using estimated parameters

for both markets and subsamples. Finally, the option prices for EEX option on Phelix

futures were calculated. The results of option calculations and the comparison of the

calculated prices with market quotes are presented in the last section of this chapter.

7.1 Parameters estimations and interpretation

For each set of parameters we present the point estimates of parameters, their standard

errors, t-ratios1 and p-values2. We also present the value of parameter ��, which is equal

to the di¤erence between real-world � and risk-neutral �� drift parameters. As it was

expected, for all markets and data sets the risk-neutral drift is close to zero.

First we compare results obtained using raw data or deseasonalized data on the

EEX. Results when using raw data are presented in the Table 7.1. To deseasonalize

prices of monthly futures contracts, we subtract b(T ) from the futures prices, where

T is the expiry month and b(T ) is the expiry e¤ect described in Section 6.5.2. To

deseasonalize prices of quarterly futures contracts we subtract b(T1) + b(T2) + b(T3)

where T1; T2 and T3 are the months composing a given quarter and b(Ti) is the monthly

1The t-ratio is the ratio of the point estimate of the parameter to the standard deviation of the
estimate:

2The p-value of a statistical signi�cance test represents the probability of obtaining values of
the test statistic that are equal to or greater in magnitude than the observed test statistic. If the
null hypothesis is true, the signi�cance level is the probability that it will be erroneously rejected
(Type I error). The smaller the p-value, the more strongly the test con�rms the null hypothesis.
Here because of large number of observations we calculate the two sided p-values using the formula
p-value=2(1� �(T-ratio)); were �(x) is standard normal distribution function.
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expiry e¤ect as above. Results for deseasonalized time series are shown in the Table 7.2.

The results of parameters estimates of Endex quotes for original and deseasonalized

prices are presented in the Tables 7.3 and 7.4.

As we compare the estimated parameters in these tables, we can see that taking

into account seasonality lowers, the speed of mean reversion � and the volatility ��,

of the short-term factors as well as the associated price of risk ��, while it slightly

increases the parameters of the long-term factor (the drift ��, volatility �� and risk

premium ��).

We also can see that parameter ���, which is correlation between short-term and

long-term factors, shows higher standard errors and p-values for EEX data. We will

test the hypothesis of ��� being zero later in this chapter.

If we compare EEX and Endex data we can see that speed of mean reversion � and

volatility parameters �� and �� are higher on the Endex market, which can be explained

by more volatile prices and more often and higher spikes on the Endex market.

We present graphs of risk premium coe¢ cient in the Section 7.2.

In the Tables 7.5 and 7.6 we present parameters estimated for two separate data

sets of futures prices. First table present results, where only deseasonalized futures

prices from July 2002 till December 2004 were used, second Table present results of

parameters estimates only for the deseasonalized prices in 2005. If we split original data

sets into the futures prices before and after 1st of January 2005, when CO2 emissions

trading was introduced, we see that the drift term for the 2005 futures prices is at least

twice higher than for the futures prices before year 2005. CO2 emissions trading led to

the constant increase in the the price levels in 2005 for both markets, which we already

have seen from the Figures 2.5 and 2.6.

If we compare results for Endex data for years 2003-2004 and 2005, presented in

the Tables 7.7 and 7.8, we can see that drift parameter �� is three time higher for

the year 2005 than for years 2003-2004. CO2 emissions trading in�uenced the level of

Endex prices more than EEX. On the other side, speed of mean-reversion parameter, in

opposition to EEX, decreases in the year 2005. The short-term risk premium parameter

changed sign in 2005, which, as we see later, makes the shape of the risk premium

similar to that of the EEX market. One of the consequences of higher mean-reversion

parameter is the lower volatility for year 2005 on the Endex market.

In the Tables 7.5 and 7.6 we present parameters estimated for two separate data

sets of futures prices. First table present results, where only deseasonalized futures

prices from July 2002 till December 2004 were used, second Table present results of

parameters estimates only for the deseasonalized prices in 2005. If we split original data

sets into the futures prices before and after 1st of January 2005, when CO2 emissions

trading was introduced, we see that the drift term for the 2005 futures prices is at

least twice higher than for the futures prices before year 2005. CO2 emissions trading
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� �� �� �� �� ��� �� ���
Estimate 2:168 0:744 0:296 0:071 0:178 0:022 0:156 �0:142
St.Error 0:077 0:062 0:018 0:006 0:022 0:001 N/A 0:104
T-ratio 28:189 11:984 16:704 12:909 8:211 23:781 N/A �1:399
P-value 0:000 0:000 0:000 0:000 0:000 0:000 N/A 0:162

Table 7.1: Estimated parameters, standard errors and t-ratios of the parameters for
EEX data from July 2002 to December 2005

� �� �� �� �� ��� �� ���
Estimate 1:491 0:472 0:189 0:078 0:181 0:025 0:156 �0:023
St.Error 0:024 0:028 0:005 0:003 0:019 0:001 N/A 0:029
T-ratio 63:330 16:584 35:276 25:231 9:460 33:318 N/A �0:798
P-value 0:000 0:000 0:000 0:000 0:000 0:000 N/A 0:425

Table 7.2: Estimated parameters, standard errors and t-ratios of the parameters for
deseasonalized EEX data from July 2002 to December 2005

� �� �� �� �� ��� �� ���
Estimate 3:810 �0:461 0:601 0:113 0:143 �0:038 0:181 �0:096
St.Error 0:018 0:002 0:003 0:003 0:023 0:002 N/A 0:010
T-ratio 207:73 �257:36 176:71 41:46 6:23 �20:51 N/A �9:88
P-value 0:000 0:000 0:000 0:000 0:000 0:000 N/A 0:000

Table 7.3: Estimated parameters, standard errors and t-ratios of the parameters for
Endex data from January 2003 to December 2005

� �� �� �� �� ��� �� ���
Estimate 3:237 �0:370 0:565 0:118 0:156 �0:032 0:188 �0:322
St.Error 0:002 0:005 0:006 0:006 0:001 0:002 N/A 0:007
T-ratio 1505:71 �77:72 89:69 20:26 166:65 �17:44 N/A �49:41
P-value 0:000 0:000 0:000 0:000 0:000 0:000 N/A 0:000

Table 7.4: Estimated parameters, standard errors and t-ratios of the parameters for
Endex deseasonalized data from January 2003 to December 2005
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� �� �� �� �� ��� �� ���
Estimate 4:021 0:623 0:327 0:078 0:142 0:025 0:116 �0:190
St.Error 0:040 0:056 0:028 0:005 0:022 0:001 N/A 0:033
T-ratio 101:163 11:058 11:811 16:278 6:314 29:517 N/A �5:804
P-value 0:000 0:000 0:000 0:000 0:000 0:000 N/A 0:000

Table 7.5: Estimated parameters, standard errors and t-ratios of the parameters for
deseasonalized EEX data from July 2002 to December 2004

led to the constant increase in the price levels in 2005 for both markets, which we

already have seen from the Figures 2.5 and 2.6. If we compare results for Endex data

for years 2003-2004 and 2005, presented in the Tables 7.7 and 7.8, we can see that drift

parameter �� is three time higher for the year 2005 than for years 2003-2004. CO2
emissions trading in�uenced the level of Endex prices more than EEX. From the other

side speed of mean-reversion parameter, in opposition to EEX, decreases in the year

2005. The short-term risk premium parameter changed sign in 2005, which, as we see

later, makes the shape of the risk premium similar to that of the EEX market. One

of the consequences of higher mean-reversion parameter is the lower volatility for year

2005 on the Endex market.

7.2 Risk premiums

Using the estimated parameters from the previous section we can calculate the risk

premiums coe¢ cients R for di¤erent data sets and di¤erent markets. Here we use

equations (5.29) and (5.32). The graphs of for the risk premium coe¢ cient R with

respect to time to maturity (in days) for di¤erent markets and data sets are presented

on the Figures 7.1-7.6.

As we can see from these graphs, for the EEX market, the risk premium coe¢ cient

is negative and decreasing. This mean that risk premium �(t; T ) computed in (5.25) is

also negative and decreasing with respect to time to maturity. For the Endex market

the situation is di¤erent for di¤erent subsamples. For all the data and for the sample

excluding the year 2005, the risk premium is increasing during the �rst four months and

then decreasing. Risk premium coe¢ cient is positive for approximately seven months

and negative for longer time to maturity. Interestingly, the risk premium behaves

di¤erently if we consider only data for Endex for the year 2005. In this case, the

situation is similar to the EEX market.
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� �� �� �� �� ��� �� ���
Estimate 1:321 0:623 0:210 0:070 0:296 0:027 0:269 0:588
St.Error 0:0264 0:0096 0:0189 0:0151 0:07838 0:0016 N/A 0:0091
T-ratio 49:983 64:566 11:096 4:597 3:777 16:322 N/A 64:787
P-value 0:000 0:000 0:000 0:000 0:000 0:000 N/A 0:000

Table 7.6: Estimated parameters, standard errors and t-ratios of the parameters for
deseasonalized EEX data from January 2005 to December 2005

� �� �� �� �� ��� �� ���
Estimate 2:942 �0:487 0:658 0:114 0:175 �0:049 0:224 �1:000
St.Error 0:0001 0:00005 0:004 0:001 0:110 0:004 N/A 0:034
T-ratio 51:284 �12:732 43:127 12:505 4:747 �20:285 N/A �18:425
P-value 0:000 0:000 0:000 0:000 0:111 0:000 N/A 0:000

Table 7.7: Estimated parameters, standard errors and t-ratios of the parameters for
Endex data from January 2003 to December 2004

7.3 Alternative models testing

As we can see from the P-values presented above, all the parameters are signi�cant

except the correlation coe¢ cient ��� for EEX futures estimation (with and without

seasonality) and for Endex futures using only data from year 2005:

In order to compare our model with the model where the correlation parameter

��� is equal to zero and with one-factor mean-reverting model (all the parameters ��,

��, �
�
� and ��� are equal to zero) we recalculate maximum log-likelihood values and

parameter estimates. The results for the model with ��� = 0 are presented in the

Tables 7.9 and 7.10 and the results for one-factor model with only three parameters

are presented in the Table 7.11.

Now if we would like to test the following two hypothesis:

� Hypothesis H1
0 = (parameter ��� = 0). We denote sets of estimated parameters

for this hypothesis by ~ (see Tables 7.9 and 7.10).

� �� �� �� �� ��� �� ���
Estimate 4:976 0:853 0:513 0:152 0:545 �0:034 0:579 0:234
St.Error 4:976 0:012 0:024 0:012 0:113 0:003 N/A 0:018
T-ratio 135:63 73:244 21:598 12:812 4:819 �9:986 N/A 12:666
P-value 0:000 0:000 0:000 0:000 0:000 0:000 N/A 0:000

Table 7.8: Estimated parameters, standard errors and t-ratios of the parameters for
Endex data from January 2005 to December 2005
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Figure 7.1: Risk premium coe¢ cient R for deseasonalized EEX market, data from July
2002 to December 2005

Figure 7.2: Risk premium coe¢ cient R for deseasonalized Endex market, data from
January 2003 to December 2005
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Figure 7.3: Risk premium coe¢ cient R for EEX market, data from July 2002 to De-
cember 2004

Figure 7.4: Risk premium coe¢ cient R for deseasonalized EEX market, data from Jan-
uary 2005 to December 2005
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Figure 7.5: Risk premium coe¢ cient R for deseasonalized Endex market, data from
January 2003 to December 2004

Figure 7.6: Risk premium coe¢ cient R for Endex market, data from January 2005 to
December 2005
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� �� �� �� �� ��� �� ���
Estimate 1:493 0:473 0:188 0:078 0:182 0:025 0:156 0:000
St.Error 0:009 0:087 0:187 0:033 0:098 0:004 N/A N/A
T-ratio 171:190 5:464 1:010 2:383 1:845 6:258 N/A N/A
P-value 0:000 0:000 0:313 0:017 0:065 0:000 N/A N/A

Table 7.9: Estimated parameters, standard errors, t-ratios and P-values of the para-
meters for EEX data for model with 6 parameters

� �� �� �� �� ��� �� ���
Estimate 3:279 �0:348 0:554 0:115 0:142 �0:032 0:174 0:000
St.Error 0:297 0:026 0:554 0:049 0:026 0:004 N/A N/A
T-ratio 11:047 �13:413 0:999 2:367 5:536 �8:259 N/A N/A
P-value 0:000 0:000 0:318 0:018 0:000 0:000 N/A N/A

Table 7.10: Estimated parameters, standard errors, t-ratios and P-values of the para-
meters for Endex data for model with 6 parameters

EEX Endex
� �� �� �� � �� �� ��

Estimate 0:262 0:162 0:149 0:093 0:325 0:338 0:228 0:194
St.Error 0:003 0:004 0:008 0:002 0:003 0:009 0:010 0:004
T-ratio 87:155 43:387 18:031 60:092 116:986 38:862 22:266 46:899
P-value 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000

Table 7.11: Estimated parameters, standard errors, t-ratios and P-values for one-factor
model for both markets
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� Hypothesis H2
0 = (parameters �� = ��� = 0 and �� = ���) We denote sets of

estimated parameters for this hypothesis by � (see Table 7.11).

We test these two null hypotheses against the hypothesis H = ( parameters from

two-factor model  ̂). See Tables 7.1 and 7.3.

We calculate the likelihood ratios test by comparing likelihood ratios with �2 dis-

tribution with corresponding number of degrees of freedom by formulae:

2
h
lnL(y;  ̂)� lnL(y; ~ )

i
� �2(1) for testing hypothesis H1

0;

2
h
lnL(y;  ̂)� lnL(y; � )

i
� �2(3) for testing hypothesis H2

0:

For the �rst hypothesis H1
0 we get

2
h
lnL(y;  ̂)� lnL(y; ~ )

i
= 0:0134 for EEX and

2
h
lnL(y;  ̂)� lnL(y; ~ )

i
= 3:8454 for Endex.

Because the probability that �2(1) variable exceeds 3:84 is equal to 0:05, we accept

null hypothesis H1
0 that parameter ��� = 0 at the 5% signi�cance level for EEX market

and reject this hypothesis for Endex market.

Now we consider second hypothesis H1
0 of the one-factor model. We get

2
h
lnL(y;  ̂)� lnL(y; � )

i
= 647:8269 for EEX and

2
h
lnL(y;  ̂)� lnL(y; � )

i
= 3451:9212 for Endex.

Because the probability that �2(3) variable exceeds 7:81 is equal to 0:05, we reject

null hypothesis H2
0 of one-factor model at the 5% signi�cance level for both markets.

7.4 Short-term and long-term of the model

Here we present modeled state variables for original and deseasonalized data for both

markets. Exponential of the short term (exp�(t)) and long term (exp�(t)) and spot

price S(t) = exp(�(t)+�(t)) for original and deseasonalized data for EEX are presented

on the Figures 7.7 and 7.8. State variables for APX original and deseasonalized data

are on the Figures 7.9 and 7.10. We can see only very small di¤erence between the

original and the deseasonalized prices in the short terms for both markets.
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Figure 7.7: Exponentials of the state variables exp(�(t)) and exp(�(t)) and the modeled
price S(t) = exp(�(t) + �(t)) for EEX data

Figure 7.8: Exponentials of the state variables exp(�(t)) and exp(�(t)) and the modeled
price S(t) = exp(�(t) + �(t)) for deseasonalized EEX data
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Figure 7.9: Exponentials of the state variables exp(�(t)) and exp(�(t)) and the modeled
price S(t) = exp(�(t) + �(t)) for APX data

Figure 7.10: Exponentials of the state variables exp(�(t)) and exp(�(t)) and t and the
modeled price S(t) = exp(�(t) + �(t)) for deseasonalized APX data
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Figure 7.11: ATM model implied volatility for EEX monthly futures.

7.5 Options prices and implied volatilities

On the Figure 7.11 we present implied volatility, calculated from the estimated model

parameters. Volatility is increasing as time to maturity decreases. We saw this property

of the implied volatility on the Figures 3.13 in Section 3.3. The implied volatilities

derived from the model parameters are lower than implied volatilities derived form the

market options prices.

To compare the options prices we present plot the ATM Call options prices for

the EEX market data (Figure 3.19) and ATM Call model options prices (Figure 3.20)

calculated by formula (5.34) using estimated parameters from Table 7.1. As we can see

from these �gures, the model captures in general the behavior of the prices, although

it shows much lower prices than the original data for the summer months 2005.



Chapter 8

Conclusions and future research

In this chapter we give the main conclusions, limitations of the model and directions

for future research.

8.1 Conclusions

Energy commodity markets have been developing very rapidly in the past few years.

Many new products on electricity have appeared and there is a need for a consistent and

simple model to price electricity derivatives based on electricity prices and to manage

�nancial risks.

In this thesis we addressed the issues of modeling electricity spot and futures prices

and prices of options. In Chapter 2 we described the spot market and presented the

derivatives traded on electricity markets and over-the-counter operations. We also

pointed out the unique features of electricity, such as its non-storability, which makes

the pricing and risk management of electricity derivatives more complicated than other

�nancial products.

In Chapter 3 we presented an empirical analysis of the spot, futures and options

prices available in the German and Dutch electricity markets. In Chapter 4 we pre-

sented some classes of existing �nancial models such as mean-reverting jump di¤usion

models, regime-witching models, models with short- and long-term factors which are

the most used models for modeling electricity prices and prices of electricity derivatives.

As compared with the other �nancial markets, basic electricity derivatives such

as futures and options on futures are more complicated because these products are

based not on the spot prices themselves but on the arithmetic averages of the spot

prices during the delivery period. In Chapter 5 we extended the two-factor model

of Schwartz and Smith [29] by including into the model the possibility to take the

averaging of the spot price over the delivery period into account. We derived closed-

form solutions for futures, options prices and risk premiums. These pricing formulae

depend on the number of parameters; these parameters are the main price drivers and
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have clear interpretation. These parameters allow us to explain the movements of the

prices in the electricity markets and calculate derivatives prices available in the market

directly the moment parameters of the models are estimated.

We implemented this model for the pricing futures in the German and Dutch elec-

tricity markets in Chapter 6 using the Kalman �lter and maximum likelihood technique

in order to �nd the optimal parameters for both markets. We also tested the model

with zero correlation between short- and long-term factor and one-factor model. In

order to check the e¤ect of introducing CO2 emission permits on the electricity market

in 2005, we also tested the model on the restricted information available before and

after January 2005.

In Chapter 7 we presented the estimated parameters, risk premiums and options

prices for di¤erent models for both markets. We illustrated how these parameters

in�uence the futures price and risk premiums. We compared the results of one-factor

model and model with zero correlation coe¢ cient between short- and long-term factor

with modi�ed two-factor Schwartz and Smith model and concluded that the modi�ed

two-factor model with averaging over the delivery period performs well especially for

capturing the futures prices. The averaging e¤ect allows us to easily incorporate

available spot prices in order to calculate the futures prices within the delivery period

very precisely.

The model performs better and gives clear parameters interpretation when seasonal

delivery e¤ect is taken into account.

8.2 Limitations and directions for future research

The issue of liquidity risks, which is very large in such young markets, is considered

to be the main limitation of the results presented in the thesis. The illiquidity of the

options market leads to arbitrage prices or missing prices of the options. Because of

data limitations the model described and analyzed in this thesis produces the lower

options prices that the prices presented in the market. As the market for electricity

derivatives develops we expect more quotes of option prices to be available, which will

allow one to include these prices into the estimation of model parameters.

The simplicity of our model is its biggest advantage but it has also few obvious

disadvantages. Although the two-factor model used in this thesis is based on the

spot price modeling, the spot prices produced by the estimated parameters do not

represent spikes and thus the spot price produced by the estimated parameters could

be considered only as the averaged spot price. It is not possible to hedge the spot

prices using the derivatives presented in the market, thus the market is incomplete

and one needs to account for the spikes and use a di¤erent model (for example a

regime-switching model) for spot prices.
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Another limitation of the model is the absence of the natural drivers of the price

movements such as load, demand and weather conditions in the model. One could

develop a hybrid model, which could include both fundamental and �nancial drivers,

although the development of such a model is restricted by the limitations of the data

available for the analysis.

We could think of few promising extensions of the current model. One possibility

is to include time varying parameters into the model. This extension will give us

more parameters to estimate and possibility to capture even small movement in the

futures market by incorporating appropriate functions for the parameters. Another

possibility to extend the model is to make the volatility parameter stochastic. But

this extension usually leads to the loss of a closed-form solution. Semi-closed solutions

instead of closed-form solutions will complicate and reduce the speed of the parameter

estimations dramatically.
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Formulae 5.16 and 5.17 (case t < T0)

Conditional mean and the conditional variance of geometric average An are equal

to
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n

�
�(t) +

��
�

� nX
i=1

e��(ti�t) + �(t)

+
(t1 � t) + (t1 +�t� t) + � � �+ (tn + (n� 1)�t� t)

n
���

+
1

n
[h(t1) + h(t2) + � � �+ h(tn)]

= ���
�
+
1

n

�
�(t) +

��
�

�
e��(t1�t)

n�1X
i=0

e�i��t + �(t) +

 
T0 � t+

1

n

nX
i=1

i�t

!
���

+
1

n
[h(t1) + h(t2) + � � �+ h(tn)]

= ���
�
+
1

n

�
�(t) +

��
�

�
e��(t1�t)

1� e�n��t
1� e���t + �(t) +

�
T0 � t+

(n+ 1)�t

2

�
���

+
1

n
[h(t1) + h(t2) + � � �+ h(tn)]

= ���
�
+
1

n

�
�(t) +

��
�

�
e��(T�t)e�(T�T0)e���t

1� e��(T�T0)
1� e���t

+�(t) +

�
(T � t)� n�t+ (n+ 1)

2
�t

�
��� +

1

n
[h(t1) + h(t2) + � � �+ h(tn)]

= ���
�
+

�
�(t) +

��
�

�
e��(T�t)

e�(T�T0) � 1
n (e�(T�T0)=n � 1)

+�(t) +

�
T � t� (n� 1)

2
�t

�
��� +

1

n
[h(t1) + h(t2) + � � �+ h(tn)]

= ���
�
+

�
�(t) +

��
�

�
e��(T�t)'(T0; T; n) + �(t) +

�
T � t� (n� 1)

2
�t

�
���

+
1

n
[h(t1) + h(t2) + � � �+ h(tn)]

= : mA(t; T0; T; n);

where

'(T0; T; n) =

�
e�(T�T0) � 1
n (e��t � 1)

�
:
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The conditional variance of An is calculated as

Var�t [An] = Var�t
h
ln
h
(S(t1)S(t2) : : : S(tn))

1=n
ii

= Var�t
�
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(tn))

�

=
1

n2
Var�t [�(t1) + �(t2) + � � �+ �(tn) + �(t1) + �(t2) + � � �+ �(tn)]

=
1

n2
Var�t

240@� (t1) + e��(t2�t1)�(t1) + �� t2Z
t1

e��(t2�u)dW �
�(u) + e

��(t3�t1)� (t1)

+��

t3Z
t1

e��(t3�u)dW �
�(u) + � � �+ e��(tn�t1)� (t1) + ��

tnZ
t1

e��(tn�u)dW �
�(u)

1A

+�(t1) + �(t1) + ��
�
W �
� (t2)�W �

� (t1)
�
+ �(t1) + ��

�
W �
� (t3)�W �

� (t1)
�
+ : : :

+�(t1) + ��
�
W �
� (tn)�W �

� (t1)
��

=
1

n2
Var�t

�
�(t1)

�
1 + e���t + e�2��t + : : : e�(n�1)�t

�
+ n�(t1)+

+

0@�� t2Z
t1

e��(t2�u)dW �
�(u) + ��

t2Z
t1

e��(t3�u)dW �
�(u) + : : :

+��

t2Z
t1

e��(tn�u)dW �
�(u)

1A+ (n� 1)�� �W �
� (t2)�W �

� (t1)
�

+

0@�� t3Z
t2

e��(t3�u)dW �
�(u) + � � �+ ��

t3Z
t2

e��(tn�u)dW �
�(u)

1A
+(n� 2)��

�
W �
� (t3)�W �

� (t2)
�
+ : : :

+��

tnZ
tn�1

e��(tn�u)dW �
�(u) + ��

�
W �
� (tn)�W �

� (tn�1)
�35 :
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Now we will use the fact that increments of Brownian motion are independent

Var�t [An] =
1

n2
Var�t

�
�(t1)

1� e�n��t
1� e���t + n�(t1)

�

+Var�t

24��
0@ t2Z
t1

�
e��(t2�u) + e��(t3�u) + � � �+ e��(tn�u)

�
dW �

�(u)

1A

+(n� 1)��
�
W �
� (t2)�W �

� (t1)
� #

+Var�t

24��
0@ t3Z
t2

�
e��(t3�u) + � � �+ e��(tn�u)

�
dW �

�(u)

1A
+(n� 2)��

�
W �
� (t3)�W �

� (t2)
��
+ : : :

+Var�t

24��
0@ tnZ
tn�1

e��(tn�u)dW �
�(u)

1A+ �� �W �
� (tn)�W �

� (tn�1)
�35

=
1

n2

�
Var�t

�
�(t1)

1� e�n��t
1� e���t

�
+ 2Cov

�
�(t1)

1� e�n��t
1� e���t ; n� (t1)

�
+ Var�t [n�(t1)]

+Var�t

24�� �1 + e���t + � � �+ e�(n�2)��t�
0@ t2Z
t1

e��(t2�u)dW �
�(u)

1A
+(n� 1)��

�
W �
� (t2)�W �

� (t1)
��

+Var�t

24�� �1 + e���t + � � �+ e�(n�3)��t�
0@ t3Z
t2

e��(t3�u)dW �
�(u)

1A
+(n� 2)��

�
W �
� (t3)�W �

� (t3)
��
+ : : :

+Var�t

24��
0@ tnZ
tn�1

e��(tn�u)dW �
�(u)

1A+ �� �W �
� (tn)�W �

� (tn�1)
�359=;



104 Appendix A

=
1

n2

(�
1� e�n��t
1� e���t

�2��
1� e�2�(t1�t)

� �2�
2�

�

+2n
1� e�n��t
1� e���t

�
1� e��(t1�t)

� �������
�

+ n2�2�(t1 � t)
�

+
1

n2

8<:�2�
�
1� e�(n�1)��t
1� e���t

�2
Var�t

0@ t2Z
t1

e��(t2�u)dW �
�(u)

1A
+2���� (n� 1)

�
1� e�(n�1)��t
1� e���t

�
�

�Cov�t

0@ t2Z
t1

e��(t2�u)dW �
�(u);

�
W �
� (t2)�W �

� (t1)
�1A+ (n� 1)2 �2�(t2 � t1)

9=;
+
1

n2

8<:�2�
�
1� e�(n�2)��t
1� e���t

�2
Var�t

0@ t3Z
t2

e��(t3�u)dW �
�(u)

1A
+2���� (n� 2)

�
1� e�(n�2)��t
1� e���t

�
�

�Cov�t

0@ t3Z
t2

e��(t3�u)dW �
�(u);

�
W �
� (t3)�W �

� (t2)
�1A

+(n� 2)2 �2�(t3 � t2)
	
+ � � �+ 1

n2

8<:�2�Var�t
0@ tnZ
tn�1

e��(tn�u)dW �
�(u)

1A

+2����Cov�t

0@ tnZ
tn�1

e��(tn�u)dW �
�(u);

�
W �
� (tn)�W �

� (tn�1)
�1A+ �2�(tn � tn�1)

9=;
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=
1

n2

(�
1� e�n��t
1� e���t

�2��
1� e�2�(t1�t)

� �2�
2�

�

+2n
1� e�n��t
1� e���t

�
1� e��(t1�t)

� �������
�

+ n2�2�(t1 � t)
�

+
1

n2

(
�2�

�
1� e�(n�1)��t
1� e���t

�2
1� e�2��t

2�

+2���� (n� 1)
�
1� e�(n�1)��t
1� e���t

�
���
k

�
1� e���t

�
+(n� 1)2 �2��t

	
+
1

n2

(
�2�

�
1� e�(n�2)��t
1� e���t

�2
1� e�2��t

2�

+2���� (n� 2)
�
1� e�(n�2)��t
1� e���t

�
���
k

�
1� e���t

�
+ (n� 2)2 �2��t+ : : :

+
1

n2

�
�2�
1� e�2��t

2�
+ 2����

���
k

�
1� e���t

�
+ �2��t

�

=
1

n2
�2�
2�

"�
1� e�2�(t1�t)

��1� e�n��t
1� e���t

�2

+
�
1� e�2��t

��1� e�(n�1)��t
1� e���t

�2
+ � � �+

�
1� e�2��t

�#
+

+
2�������

�n2

�
n
1� e�n��t
1� e���t

�
1� e��(t1�t)

�
+(n� 1)

�
1� e�(n�1)��t

�
+ � � �+

�
1� e���t

��
+
�2�
n2
�
n2(t1 � t) + ((n� 1)2 + (n� 2)2 + � � �+ 1)�t

�
=

1

n2
�2�
2�

"�
e�2��t � e�2�(t1�t)

��1� e�n��t
1� e���t

�2
+

�
1� e�2��t

�
(1� e���t)2

nX
i=1

(1� e�i��t)2
#

+
2�������

�n2

"
n
1� e�n��t
1� e���t

�
1� e��(T�t)e�(T�T0)e��(T�T0)=n

�
+

n�1X
i=1

i
�
1� e�i��t

�#

+
�2�
n2
�
n2(t1 � t) + ((n� 1)2 + (n� 2)2 + � � �+ 1)�t

�
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=
�2�
2�

"�
e�2�(T�T0) � e�2�(T�t)

��e�(T�T0) � 1
n (e��t � 1)

�2
+
1

n2
1 + e���t

1� e���t
nX
i=1

(1� 2e�i��t + e�2i��t)
#

+
2�������

�

"
e�(T�T0) � 1
n (e��t � 1)

�
e��(T�T0)e�(T�T0)=n � e��(T�t)

�
+
1

n2

n�1X
i=1

i
�
1� e�i��t

�#

+
�2�
n2
�
n2(t1 � t) + ((n� 1)2 + (n� 2)2 + � � �+ 1)�t

�
=

�2�
2�

��
e�2�(T�T0) � e�2�(T�t)

�
('(T0; T; n))

2

+
1 + e���t

1� e���t

�
1

n
� 2e

���t

n

1� e��n�t
n (1� e���t) +

e�2��t

n2
1� e�2�n�t
1� e�2��t

��

+
2�������

�

"�
e��(T�T0)e�(T�T0)=n � e��(T�t)

�
'(T0; T; n) +

1

n2

n�1X
i=1

i
�
1� e�i��t

�#

+
�2�
n2
�
n2(t1 � t) + ((n� 1)2 + (n� 2)2 + � � �+ 1)�t

�
=

�2�
2�

��
e�2�(T�T0) � e�2�(T�t)

�
('(T0; T; n))

2

+
1 + e���t

1� e���t

�
1

n
� 2e

��(T�T0)

n
'(T0; T; n) +

1

n2
1� e�2�n�t
e2��t � 1

��

+
2�������

�

"�
e��(T�T0)e�(T�T0)=n � e��(T�t)

�
'(T0; T; n) +

1

n2

n�1X
i=1

i
�
1� e�i��t

�#

+
�2�
n2
�
n2(t1 � t) + ((n� 1)2 + (n� 2)2 + � � �+ 1)�t

�
= : �2A(t; T0; T; n):

Formulae 5.21 and 5.22 (case t � T0)

Now consider the case where we would like to price future during delivery period,
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i.e. T0 < t � T: Let i� to be such that ti��1 < t � ti�. Then

E�t [An] = E�t
n
ln
h
(S(t1)S(t2) : : : S(tn))

1=n
io

= E�t
�
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(tn))

�

=
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(ti��1)) +

1

n
[E�t [lnSi� ] + � � �+ E�t [lnSn]]

=
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(ti��1)) +

1

n
(h(ti�) + � � �+ h(tn))

+
1

n

�
���
�
+ e��(ti��t)

�
�(t) +

��
�

�
+ �(t) + ���(ti� � t) + : : :

+

�
���
�
+ e��(tn�t)

�
�(t) +

��
�

�
+ �(t) + ���(tn � t)

��

=
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(ti��1) + h(ti�) + � � �+ h(tn))

+
1

n

�
�(t) +

��
�

��
e��(ti��t) + � � �+ e��(tn�t)

�
+
n� i� + 1

n

�
���
�
+ �(t)

�
+
���
n

 
(T0 � t) (n� i� + 1) +

nX
i=i�

i�t

!

=
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(ti��1) + h(ti�) + � � �+ h(tn))

+
1

n

�
�(t) +

����
�

�
e��(ti��t)

n�i�X
i=0

e�i��t +
n� i� + 1

n

�
�����

�
+ �(t)

�

+
���
n

�
(T0 � t) (n� i� + 1) +

(i� + n)(n� i� + 1)
2

�t

�

=
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(ti��1) + h(ti�) + � � �+ h(tn))

+
1

n

�
�(t) +

����
�

�
e��(ti��t)

1� e�(n�i�+1)��t
1� e���t

+
n� i� + 1

n

�
�����

�
+ �(t) + ���

�
(T0 � t) +

(i� + n)

2
�t

��
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=
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(ti��1) + h(ti�) + � � �+ h(tn))

+
1

n

�
�(t) +

����
�

�
e��(ti��t)

1� e�(n�i�+1)��t
1� e���t

+
n� i� + 1

n

�
�����

�
+ �(t) + ���

�
(T0 � t) +

(i� + n)

2
�t

��

=
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(ti��1))�

n� i� + 1
n

��
�

+

�
�(t) +

��
�

�
e�(n�i

�+1)�t � 1
n(e��t � 1) e��(T�t) +

n� i� + 1
n

�(t)

+
n� i� + 1

n

�
(T � t)� n� i

�

2
�t

�
��� +

1

n
(h(ti�) + � � �+ h(tn))

=
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(ti��1) + h(ti�) + � � �+ h(tn))

+

�
�(t) +

��
�

�
e��(T�t)'�(T0; T; n)

+
n� i� + 1

n

�
�(t)� ��

�
+

�
T � t� n� i

�

2
�t

�
���

�
= : �mA(t; T0; T; n);

and

Var�t [An] =
1

n2
�2�
2�

"�
1� e�2�(ti��t)

��1� e�(n�i�+1)��t
1� e���t

�2

+
�
1� e�2��t

��1� e�(n�i�)��t
1� e���t

�2
+ � � �+

�
1� e�2��t
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+
2�������
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�
(n� i� + 1)1� e

�(n�i�+1)��t

1� e���t
�
1� e��(ti��t)

�
+(n� i�)

�
1� e�(n�i�)��t

�
+ � � �+

�
1� e���t

��
+
�2�
n2
�
(n� i� + 1)2(ti� � t) + ((n� i�)2 + (n� i� � 1)2 + � � �+ 1)�t

�
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=
�2�
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��
e�2�(n�i

�+1)�t � e�2�(T�t)
�
'�(T0; T; n)

+
1 + e���t

1� e���t

�
n� i� + 1

n2
� 2e

��(n�i�+1)�t

n
'�(T0; T; n)

��

+
2�������

�

"
n� i� + 1

n
'�(T0; T; n)

�
e��(n�i

�)�t � e��(T�t)
�
+
1

n2

n�i�X
i=1

i(1� e��i�t)
#

+
�2�
n2
�
(n� i� + 1)2(ti� � t) + ((n� i�)2 + (n� i� � 1)2 + � � �+ 1)�t

�
= : ��2A(t; T0; T; n);

where

'�(T0; T; n) =

�
e�(n�i

��1)�t � 1
n (e��t � 1)

�
:
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Formulae 5.26, 5.27 and 5.29(case t < T0)

Using (5.5) and (5.6) we get:

Et [An] = Et
�
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(tn))

�

=
1

n

��
e��(t1�t)�(t) + �(t) + ��(t1 � t)

�
+
�
e��(t2�t)�(t) + �(t) + ��(t2 � t)

�
+ : : :

+
�
e��(tn�t)�(t) + �(t) + ��(tn � t)

�	
+
1

n
[h(t1) + h(t2) + � � �+ h(tn)]

=
1

n

nX
i=1

e��(ti�t)�(t) + �(t) +
(t1 � t) + (t1 +�t� t) + � � �+ (tn + (n� 1)�t� t)

n
��

+
1

n
[h(t1) + h(t2) + � � �+ h(tn)]

=
1

n
e��(t1�t)

n�1X
i=0

e�i��t�(t) + �(t) +

 
T0 � t+

1

n

nX
i=1

i�t

!
��

+
1

n
[h(t1) + h(t2) + � � �+ h(tn)]

=
1

n
e��(t1�t)

1� e�n��t
1� e���t �(t) + �(t) +

�
T0 � t+

n+ 1

2
�t

�
��

+
1

n
[h(t1) + h(t2) + � � �+ h(tn)]
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= e��(T�t)
en��t � 1
n (e��t � 1)�(t) + �(t) +

�
T � t� n� 1

2
�t

�
��

+
1

n
[h(t1) + h(t2) + � � �+ h(tn)]

= e��(T�t)'(T0; T; n)�(t) + �(t) +

�
T � t� n� 1

2
�t

�
��

+
1

n
[h(t1) + h(t2) + � � �+ h(tn)]

Vart(An) = Var�t (An) = �2(t; T0; T; n);

and Et [Gn] can be calculated as before

Et [Gn] = exp
�
Et [An] +

1

2
�2A(t; T0; T; n)

�
:

And thus term premium coe¢ cient can be expressed as

R = log

�
E�t [Gn]
Et [Gn]

�
= log
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�
mA(t; T0; T; n) +

1
2
�2A(t; T0; T; n)

	
exp

�
Et [An] + 1

2
�2A(t; T0; T; n)

	 !

= mA(t; T0; T; n)� Et [An]

=

�
���
�
+
1

n

�
�(t) +

��
�

�
e��(t1�t)

1� e�n��t
1� e���t

+�(t) +

�
T0 � t+

(n+ 1)

2
�t

�
���

�

�
�
1

n
e��(t1�t)

1� e�n��t
1� e���t �(t) + �(t) +

�
T0 � t+

n+ 1

2
�t

�
��

�

= ���
�

�
1� e��(T�t)'(T0; T; n)

�
� ��

�
T � t� (n� 1)

2
�t

�
:

Formulae 5.30, 5.31 and 5.32(case t � T0)

For the case where T0 < t � T the calculations are almost the same as in previous
section, we can write
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Et [An] =
1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(ti��1) + h(ti�) + � � �+ h(tn))

+
n� i� + 1

n

�
e��(ti��t)�(t) + �(t) + ��(ti� � t)

�
+
n� i�
n

�
e��(ti�+1�t)�(t) + �(t) + ��(ti�+1 � t)

�
+ : : :

+
1

n

�
e��(tn�t)�(t) + �(t) + ��(tn � t)

�
=

1

n
(lnS(t1) + lnS(t2) + � � �+ lnS(ti��1) + h(ti�) + � � �+ h(tn))

+
1

n
e��(ti��t)

1� e�(n�i�+1)��t
1� e���t �(t)

+
n� i� + 1

n

�
�(t) + ��

�
(T0 � t) +

(i� + n)

2

�
�t

�

Vart(An) = Var�t (An) = ��2A(t; T0; T; n);

and thus term premium coe¢ cient in this case is

R = log

�
E�t [Gn]
Et [Gn]

�
= log

0BB@exp
�
�m(t; T0; T; n) +

1

2
��2A(t; T0; T; n)

�
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�
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1

2
��2A(t; T0; T; n)

�
1CCA
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1
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+
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2
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���
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= ���
�

�
n� i� + 1

n
� 1

n
e��(ti��t)

1� e�(n�i�+1)��t
1� e���t

�

���
n� i� + 1

n

�
(T0 � t) +

(i� + n)

2
�t

�
:
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